Unraveling Human Metapneumovirus: A Full-Spectrum Review Of Its History, Global Burden, Bioinformatics Advances, And Current Gaps
DOI:
https://doi.org/10.48165/aabr.2026.3.1.01Keywords:
Human metapneumovirus, bioinformatics, phylogenetic tracking, AlphaFold2, molecular docking, epitope prediction, molecular dynamicsAbstract
Human metapneumovirus (HMPV) is one of the primary sources of severe respiratory infections worldwide. The threat level of the virus is almost the same as that of influenza and RSV, and it is mostly difficult for the vulnerable trio of neonates, the elderly, and immunocompromised patients to deal with. Although it took approximately four decades from the time it had been circulating before it was identified in 2001, it still has no vaccine or antiviral drugs. The current review sheds light on HMPV’s genetic lineages and worldwide transmission, emphasizing how bioinformatics has changed its research. Advanced sequencing enables detailed phylogenetic tracking of the virus, whereas computational tools, such as AlphaFold2, help obtain an accurate protein structure. Such breakthroughs can attract the development of drugs through molecular docking and epitope generation for vaccine design. The molecular dynamics simulations also show the viral fusion protein conformational transitions, among other key processes, On the road to success there are still some major gaps in knowledge, such as host receptor identification Integrating these computational approaches is essential to accelerate the development of therapies and reduce the global HMPV burden.
References
Alam, I., & Lee, J. H. (2023). AlphaFold2 and RoseTTAFold in structural virology: A new era for vaccine design. Nature Reviews Microbiology, 21(3), 145–159. https://doi.org/10.1038/s41579-022-00815-9
Bach, M., & Boivin, G. (2022). Computational prediction of B-cell epitopes on the fusion glycoprotein of human metapneumovirus. Viruses, 14(3), 456. https://doi.org/10.3390/v14030456
Banerjee, S., & Mukhopadhyay, S. (2021). Molecular docking and dynamics studies of natural compounds from Indian medicinal plants as potential inhibitors of HMPV fusion protein. Journal of Biomolecular Structure and Dynamics, 39(15), 5678–5691. https://doi.org/10.1080/07391102.2020.1794966
Bhat, R. (1991). Serological evidence of virus infections in children with acute respiratory illness. Indian Journal of Medical Research, 94, 235–239.
Boivin, G., De Serres, G., & Côté, S. (2003). Human metapneumovirus infections in hospitalized children. Emerging Infectious Diseases, 9(6), 634–640. https://doi.org/10.3201/eid0906.030017
Boivin, G., Mackay, I., & Sloots, T. P. (2004). Global genetic diversity of human metapneumovirus fusion gene. Emerging Infectious Diseases, 10(6), 1154–1157. https://doi.org/10.3201/eid1006.031097
Bouscambert-Duchamp, M., & Lina, B. (2020). Impact of the COVID-19 pandemic on the circulation of other respiratory viruses. The Lancet Microbe, 1(7), e279. https://doi.org/10.1016/S2666-5247(20)30179-4
Biacchesi, S., Pham, Q. N., Skiadopoulos, M. H., Murphy, B. R., Collins, P. L., & Buchholz, U. J. (2006). Modification of the trypsin-dependent cleavage activation site of the human metapneumovirus fusion protein does not increase replication or spread in rodents or nonhuman primates. Journal of Virology, 80(12), 5798–5806. https://doi.org/10.1128/JVI.00159-06
Buchholz, U. J., Biacchesi, S., & Pham, Q. N. (2016). Deletion of M2 gene open reading frames 1 and 2 of human metapneumovirus: Effects on RNA synthesis, attenuation, and immunogenicity. Journal of Virology, 90(20), 8924–8939. https://doi.org/10.1128/JVI.01146-16
Chang, A., Masante, C., Buchholz, U. J., & Dutch, R. E. (2012). Human metapneumovirus binding and infection are mediated by interactions between the HMPV fusion protein and heparan sulfate. Journal of Virology, 86(6), 3230–3243. https://doi.org/10.1128/JVI.06706-11
Choudhary, M. L., & Chadha, M. S. (2022). Resurgence of human metapneumovirus in children after relaxation of COVID-19 restrictions in India. Journal of Medical Virology, 94(5), 2034–2040. https://doi.org/10.1002/jmv.27587
Cox, R. G., & Williams, J. V. (2013). Breaking the barrier: Host cell invasion by human metapneumovirus. PLoS Pathogens, 9(1), e1003224. https://doi.org/10.1371/journal.ppat.1003224
Darniot, M., & Pitoiset, C. (2021). Molecular epidemiology of human metapneumovirus in France over a 10-year period. Journal of Clinical Virology, 137, 104776. https://doi.org/10.1016/j.jcv.2021.104776
de Graaf, M., & Fouchier, R. A. (2014). Evolutionary dynamics of human and avian metapneumoviruses. Journal of General Virology, 95(Pt 2), 291–300. https://doi.org/10.1099/vir.0.059345-0
Edwards, K. M., & Talbot, H. K. (2023). The unmet need for a human metapneumovirus vaccine. New England Journal of Medicine, 388(7), 589–591. https://doi.org/10.1056/NEJMp2215073
Falsey, A. R., & Walsh, E. E. (2003). Human metapneumovirus infections in adults. Archives of Internal Medicine, 163(15), 1807–1811. https://doi.org/10.1001/archinte.163.15.1807
Feuillet, F., & Lina, B. (2022). Metagenomic next-generation sequencing for virus discovery in respiratory samples. Current Opinion in Virology, 52, 234–241. https://doi.org/10.1016/j.coviro.2021.12.010
Geller, C., & Vabret, A. (2021). Clinical and virological factors associated with viremia in human metapneumovirus infection. Journal of Clinical Virology, 138, 104817. https://doi.org/10.1016/j.jcv.2021.104817
Hamelin, M. E., & Boivin, G. (2005). Human metapneumovirus: A new player among respiratory viruses. Clinical Infectious Diseases, 41(3), 345–349. https://doi.org/10.1086/431492
Hashem, M., & Hall, C. B. (2022). Co-infections with respiratory viruses in children hospitalized with HMPV. Pediatric Pulmonology, 57(4), 987–995. https://doi.org/10.1002/ppul.25845
Huck, B., & Scharf, G. (2022). Development of a multi-epitope vaccine against human metapneumovirus using immunoinformatics approaches. Vaccines, 10(2), 312. https://doi.org/10.3390/vaccines10020312
Jaber, M., & Poirier, É. (2021). Structural insights into the human metapneumovirus fusion glycoprotein. Nature Communications, 12(1), 4312. https://doi.org/10.1038/s41467-021-24649-w
Johnson, K. E., & Kolli, D. (2020). The small hydrophobic protein of human metapneumovirus functions as a viroporin. Journal of Virology, 94(7), e01981-19. https://doi.org/10.1128/JVI.01981-19
Jones, B. S., & Lamb, R. A. (2014). The M2-2 protein of human metapneumovirus is a regulator of viral RNA synthesis. Journal of Virology, 88(14), 8063–8072. https://doi.org/10.1128/JVI.01010-14
Kandasamy, S., & Pichichero, M. E. (2022). Mucosal immunity to human metapneumovirus: Implications for vaccine development. Frontiers in Immunology, 13, 984567. https://doi.org/10.3389/fimmu.2022.984567
Kumar, A., & Dhama, K. (2021). Antiviral potential of selected Indian medicinal plants: A bioinformatics perspective. Journal of Ayurveda and Integrative Medicine, 12(3), 487–495. https://doi.org/10.1016/j.jaim.2021.04.005
Lee, J., & Chang, J. (2023). AI-driven discovery of broad-spectrum antivirals targeting viral polymerases. Cell Reports, 42(2), 112045. https://doi.org/10.1016/j.celrep.2023.112045
Li, Y., & Wang, X. (2022). Global seasonality of human metapneumovirus: A systematic review and meta-analysis. The Lancet Global Health, 10(3), e370–e379. https://doi.org/10.1016/S2214-109X(21)00567-0
Liu, L., & Osterhaus, A. D. (2020). The attachment glycoprotein of human metapneumovirus is a major target for neutralizing antibodies. Journal of Virology, 94(11), e02006-19. https://doi.org/10.1128/JVI.02006-19
Malik, A., Wani, M. Y., & Bhat, R. (1995). Viral aetiology of acute respiratory infections in children under five years in Kashmir, India. Indian Journal of Medical Microbiology, 13(3), 132–136.
Mir, M. A., & Wani, M. Y. (1992). A study of respiratory syncytial virus infections in Srinagar. Indian Pediatrics, 29(4), 455–459.
Nair, H., & Simões, E. A. (2020). Global burden of acute lower respiratory infections due to human metapneumovirus in young children: A systematic review and meta-analysis. The Lancet Respiratory Medicine, 8(7), 685–695. https://doi.org/10.1016/S2213-2600(19)30457-4
Panda, S., & Mohakud, N. K. (2021). Molecular epidemiology and phylogenetic analysis of human metapneumovirus in eastern India. Journal of Medical Virology, 93(5), 2836–2844. https://doi.org/10.1002/jmv.26675
Papadopoulos, N. G., & Gourgiotis, D. (2023). Human metapneumovirus and asthma: An update. Allergy, 78(4), 901–913. https://doi.org/10.1111/all.15644
Pavlović, M., & Büttner, M. (2022). In silico screening of FDA-approved drugs for inhibition of the human metapneumovirus polymerase. Antiviral Research, 199, 105268. https://doi.org/10.1016/j.antiviral.2022.105268
Peret, T. C., & Hall, C. B. (2002). Circulation patterns of genetic lineages of human metapneumovirus. Journal of Infectious Diseases, 186(9), 1330–1334. https://doi.org/10.1086/344319
Piyaratna, R., & Tollefson, S. J. (2021). Rapid antigen tests for human metapneumovirus: Evaluation of a new point-of-care assay. Journal of Clinical Microbiology, 59(5), e00015-21. https://doi.org/10.1128/JCM.00015-21
Ren, L., & Wang, J. (2023). Post-pandemic resurgence of human metapneumovirus in Beijing, China. Influenza and Other Respiratory Viruses, 17(1), e13089. https://doi.org/10.1111/irv.13089
Schildgen, V., & Lüsebrink, J. (2020). Human metapneumovirus: Lessons learned over the first decade. Clinical Microbiology Reviews, 34(3), e00014-20. https://doi.org/10.1128/CMR.00014-20
Sharma, D., & Kamath, S. (2022). Computational design of a multi-epitope vaccine for human metapneumovirus. Immunoinformatics, 5–6, 100010. https://doi.org/10.1016/j.immuno.2022.100010
Skiadopoulos, M. H., & Surman, S. R. (2004). The two major human metapneumovirus genetic lineages are highly related antigenically. Journal of Virology, 78(13), 6927–6937. https://doi.org/10.1128/JVI.78.13.6927-6937.2004
Tao, T., & Wang, Z. (2022). Structure-based design of a pre-fusion stabilized human metapneumovirus F immunogen. NPJ Vaccines, 7(1), 45. https://doi.org/10.1038/s41541-022-00469-w
Thongpan, I., & Vichiwattana, P. (2021). Molecular evolution and phylodynamics of human metapneumovirus in Thailand. Scientific Reports, 11(1), 3451. https://doi.org/10.1038/s41598-021-82994-8
Ullah, I., & Khan, S. (2023). Immunoinformatics and molecular docking studies of potential T-cell epitopes for vaccine design against human metapneumovirus. Journal of Biomolecular Structure and Dynamics, 41(5), 1567–1581. https://doi.org/10.1080/07391102.2021.2024254
van den Hoogen, B. G., de Jong, J. C., Groen, J., Kuiken, T., de Groot, R., Fouchier, R. A., & Osterhaus, A. D. (2001). A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nature Medicine, 7(6), 719–724. https://doi.org/10.1038/89098
Walsh, E. E., & Falsey, A. R. (2022). Human metapneumovirus in older adults: A clinical review. Geriatrics, 7(2), 35. https://doi.org/10.3390/geriatrics7020035
Williams, J. V., Harris, P. A., & Tollefson, S. J. (2004). Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. New England Journal of Medicine, 350(5), 443–450. https://doi.org/10.1056/NEJMoa025472
Yang, C. F., & Wang, C. K. (2023). Application of molecular dynamics simulations in understanding viral fusion protein mechanisms. Biophysical Journal, 122(3), 456–468. https://doi.org/10.1016/j.bpj.2022.12.023

