A Comprehensive Review Of Multi-Omics, Network Pharmacology,  And Artificial Intelligence Approaches To Heart Failure

Authors

  • Fatima Patel Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Waghodia Road, Vadodara- 391760, Gujarat, India.
  • Deepali KS Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Waghodia Road, Vadodara- 391760, Gujarat, India.
  • Vaibhav Sabale Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Waghodia Road, Vadodara- 391760, Gujarat, India.

DOI:

https://doi.org/10.48165/aabr.2026.3.1.02

Keywords:

Heart Failure, Precision Medicine, Multi-Omics, Network Pharmacology, Artificial Intelligence, Molecular docking

Abstract

Heart failure continues to be a pandemic of the twenty-first century, a major  contributor to which are chronic diseases and the increasing number of elderly  people. The transition from the outdated “dropsy” to the modern neurohormonal  theory of the illness is reviewed. Beta-blockers, MRAs, ARNIs, and SGLT2  inhibitors are the core “scaffold” of medicines that have improved nearly all  patient outcomes, which is why treatment has revolutionized itself. However, since  genetics recognizes the genetic variability of heart failure situations, it holds the  key to the sector’s future. The goal of this effort is to identify illness endotypes  for customized therapeutic care, driven by bioinformatics and multi-omics data.  On top of that, the scientists are keen on implementing the same technology and  in silico approaches to explore phytocomplexes with multitarget activity. AI and  machine learning have dramatically transformed the pharmaceutical industry,  disease prediction, and diagnostic procedures. This paper elucidates the evolution  of heart failure management from an indiscriminate, reactive model to a tailored,  systems-based, preventive paradigm. 

 

References

Anker, S. D., Butler, J., Filippatos, G., Ferreira, J. P., Rocha, J. L., & Silva, J. J. (2021). Empagliflozin in heart failure with a preserved ejection fraction. New England Journal of Medicine, 385(16), 1455–1466. https://doi.org/10.1056/NEJMoa2107038

Arnett, D. K., Blumenthal, R. S., Albert, M. A., Buroker, A. B., Goldberger, Z. D., Hahn, E. J., & Smith, S. C. (2020). 2020 ACC/AHA statement on the role of human genomics in cardiac disease. Journal of the American College of Cardiology, 75(25), 3178–3209. https://doi.org/10.1016/j.jacc.2020.04.003

Arulkumar, R., Jung, H. J., Noh, S. G., Kim, H. W., & Chung, H. Y. (2024). 8-Prenylgenistein isoflavone in Cheonggukjang acts as a novel AMPK activator attenuating hepatic steatosis by enhancing the SIRT1-mediated pathway. International Journal of Molecular Sciences, 25(17), 9730. https://doi.org/10.3390/ijms25179730

Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., & Sinclair, D. A. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444(7117), 337–342. https://doi.org/10.1038/nature05354

Chen, Z.-X., Qin, Y.-S., Shi, B.-H., Gao, B.-Y., Tao, R.-C., & Yong, X.-Z. (2024). Effects of curcumin on radiation/chemotherapy-induced oral mucositis. Current Issues in Molecular Biology, 46(9), 10545–10569. https://doi.org/10.3390/cimb46090628

Choi, E., Hong, S., Kim, H., & Lee, J. Y. (2018). A deep learning model to predict heart failure hospitalizations. JAMA Cardiology, 3(9), 839–847. https://doi.org/10.1001/jamacardio.2018.2063

Cohn, J. N. (2004). The neurohumoral hypothesis in heart failure: A brief history. European Heart Journal Supplements, 6(Suppl D), D4–D7. https://doi.org/10.1016/j.ehjsup.2004.10.001

Cook, C., Cole, G., & Asaria, P. (2014). The direct and indirect economic costs of heart failure: A systematic review of the global literature. European Journal of Heart Failure, 16(11), 1199–1210. https://doi.org/10.1002/ejhf.679

Ferreira, F., Bessa, L. J., Silva, S. R., Mota, M. M., & Dias, C. S. (2022). Molecular docking-based screening of natural products as potential inhibitors of protein targets related to heart failure. Journal of Molecular Modeling, 28(2), 59. https://doi.org/10.1007/s00894-022-05051-9

Harikrishnan, S., et al. (2020). Five-year mortality and predictors of outcomes in patients with heart failure: Trivandrum Heart Failure Registry (THFR). ESC Heart Failure, 7(5), 2667–2677. https://doi.org/10.1002/ehf2.12861

He, Y., Nishi, H., Chen, R., Wang, Y., & Chen, J. (2023). Multi-omics and machine learning for heart failure. Nature Reviews Cardiology, 20(11), 733–750. https://doi.org/10.1038/s41569-023-00883-1

Heidenreich, P. A., Bozkurt, B., Aguilar, D., Allen, L. A., Byun, J. J., Colvin, M. M., & Yancy, C. W. (2022). 2022 AHA/ACC/HFSA guideline for the management of heart failure. Journal of the American College of Cardiology, 79(17), e263–e421. https://doi.org/10.1016/j.jacc.2021.12.012

Heidenreich, P. A., Bozkurt, B., Aguilar, D., Allen, L. A., Byun, J. J., Colvin, M. M., & Yancy, C. W. (2022). 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the ACC/AHA Joint Committee on Clinical Practice Guidelines. Circulation, 145(18), e895–e1032. https://doi.org/10.1161/CIR.0000000000001063

Ho, K. K., Pinsky, J. L., Kannel, W. B., & Levy, D. (1993). The epidemiology of heart failure: The Framingham Study. Journal of the American College of Cardiology, 22(4), 6A–13A. https://doi.org/10.1016/0735-1097(93)90455-5

Hopkins, A. L. (2007). Network pharmacology: The next paradigm in drug discovery. Nature Chemical Biology, 4(11), 682–690. https://doi.org/10.1038/nchembio.118

Howitz, K. T., Bitterman, K. L., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., & Sinclair, D. A. (2003). Small-molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425(6954), 191–196. https://doi.org/10.1038/nature01960

Huffman, M. D., & Prabhakaran, D. (2010). Heart failure: Epidemiology and prevention in India. National Medical Journal of India, 23(5), 283–288.

Katz, A. M. (1992). The neurohormonal hypothesis: A theory to explain the mechanism of disease progression in heart failure. Journal of the American College of Cardiology, 20(4), 819–829. https://doi.org/10.1016/0735-1097(92)90178-E

Kenchaiah, S., Evans, J. C., Levy, D., Benjamin, E. J., Larson, M. G., Kannel, W. B., & Vasan, R. S. (2002). Obesity and the risk of heart failure. New England Journal of Medicine, 347(5), 305–313. https://doi.org/10.1056/NEJMoa020245

Khan, M. S., Shahid, I., Bennis, A., Rakisheva, A., Metra, M., Butler, J., & Virani, S. S. (2024). Global epidemiology of heart failure. Nature Reviews Cardiology, 21(10), 717–734. https://doi.org/10.1038/s41569-024-01012-2

Liu, M., Zhou, T., Zhang, Y., & Wang, Z. (2015). Curcumin protects against cardiac fibrosis by inhibiting inflammatory response and Smad3 signaling pathway. Molecular Medicine Reports, 11(5), 3469–3474. https://doi.org/10.3892/mmr.2015.3177

Lopez, B., Gonzalez, A., & Beaumont, J. (2017). Myocardial fibrosis and heart failure with preserved ejection fraction. Journal of the American College of Cardiology, 70(22), 2709–2720. https://doi.org/10.1016/j.jacc.2017.09.064

Ma, X., Zhang, H., Cui, D., Chen, S., Sun, Y., & Zhou, B. (2020). Network pharmacology-based investigation of herbal medicine for heart failure. Evidence-Based Complementary and Alternative Medicine, 2020, Article 6543152. https://doi.org/10.1155/2020/6543152

McMurray, J. J. V., Packer, M., Desai, A. S., Gong, J., Swedberg, J., Bøhm, M., & Zile, M. R. (2014). Angiotensin-neprilysin inhibition versus enalapril in heart failure. New England Journal of Medicine, 371(11), 993–1004. https://doi.org/10.1056/NEJMoa1409077

Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14

<1639::AID-JCC10>3.0.CO;2-B

O’Connell, C., Lee, A., Fan, Z., & Taylor, S. H. (2022). AI-driven echocardiogram analysis for ejection fraction assessment. JACC: Cardiovascular Imaging, 15(4), 721–735. https://doi.org/10.1016/j.jcmg.2021.11.020

Packer, M. (2005). Heart failure: A rising tsunami. Circulation, 111(8), 961–963. https://doi.org/10.1161/01.CIR.0000159112.02934.D5

Packer, M., Anker, S. D., Butler, J., Filippatos, G., Rocha, J. L., & Silva, J. J. (2019). Dapagliflozin in patients with heart failure and reduced ejection fraction. New England Journal of Medicine, 381(16), 1529–1539. https://doi.org/10.1056/NEJMoa1911303

Packer, M., Anker, S. D., Butler, J., Filippatos, G., Rocha, J. L., & Silva, J. J. (2020). Cardiovascular and renal outcomes with empagliflozin in heart failure. New England Journal of Medicine, 383(15), 1413–1424. https://doi.org/10.1056/NEJMoa2022190

Pitt, B., Zannad, F., Remme, W. J., Cody, R., & Lopez, S. J. (1999). The effect of spironolactone on morbidity and mortality in patients with severe heart failure. New England Journal of Medicine, 341(10), 709–717. https://doi.org/10.1056/NEJM199909023411001

Ziaeian, B., & Fonarow, G. C. (2020). Epidemiology and aetiology of heart failure in low- and middle-income countries. Nature Reviews Cardiology, 17(5), 291–306. https://doi.org/10.1038/s41569-019-0314-0

Zhang, Z., Gong, Y., & Chen, J. (2020). Artificial intelligence in drug discovery and development for cardiovascular diseases. Circulation Research, 126(10), 1511–1522. https://doi.org/10.1161/CIRCRESAHA.119.316001

Published

2026-01-05

How to Cite

A Comprehensive Review Of Multi-Omics, Network Pharmacology,  And Artificial Intelligence Approaches To Heart Failure. (2026). Advances in Applied Biological Research, 3(1), 13-28. https://doi.org/10.48165/aabr.2026.3.1.02