BACTERIAL EXOPOLYSACCHARIDE-MEDIATED GREEN SYNTHESIS OF IRON OXIDE NANOPARTICLE AND ITS EFFECT ON BACTERIAL BIOFILM

Authors

  • Riyanki Das Department of Nanotechnology, North Eastern Hill University, Shillong - 793 022, Meghalaya (India)
  • Sukhen Bhowmik Department of Chemistry, Tripura University, Suryamaninagar - 799 022, Tripura (India)
  • Debjani Bhowmik Department of Computer Science & Engineering, Faculty of Science & Technology, ICFAI University, Kamalghat - 799 210, Tripura (India)
  • Abhijit Bhattacharya Department of Chemistry, Bir Bikram Memorial College, College Tilla - 799 004, Tripura (India)
  • L Robindo Singh Department of Nanotechnology, North Eastern Hill University, Shillong - 793 022, Meghalaya (India)
  • Manash C Das Microbial Biotechnology Lab, Department of Medical Laboratory Technology, Women’s Polytechnic, Hapania - 799 130, Tripura (India)

DOI:

https://doi.org/10.48165/abr.2025.27.01.24

Keywords:

Biofilm, dispersion, characterisation, iron oxide nanoparticle, TEM

Abstract

Biofilm acts as a protective shield for planktonic bacteria, enabling them to develop tolerance against antibacterial drugs. Escherichia coli and Bacillus subtilis are among the primary biofilm-forming bacteria, producing an exopolysaccharide (EPS) matrix in which planktonic cells become embedded to form structured biofilms. In the present study, iron oxide nanoparticles (NPs) were synthesized using bacterial EPS and their antibiofilm activities against E. coli and B. subtilis were evaluated. Two types of nanoparticles, GFNB (synthesized using B. subtilis EPS) and GFNE (synthesized using E. coli EPS), were developed via an EPS-mediated hydrothermal method. The nanoparticles were characterized using UV-Vis spectroscopy, FTIR, XRD, and TEM. TEM analysis revealed that the crystalline iron oxide NPs had sizes of less than 5 nm (GFNB) and less than 2 nm (GFNE). The NPs inhibited planktonic bacterial growth at concentrations of 1.3 µg/mL and 3.2 µg/mL (GFNB and GFNE, respectively) against E. coli, and at 3.2 µg/mL and 4.2 µg/mL (GFNB and GFNE, respectively) against B. subtilis. Moreover, the NPs demonstrated significant inhibition of biofilm formation and facilitated the dispersion of sessile cells even at sub-inhibitory concentrations. This study highlights a green synthesis approach to producing iron oxide nanoparticles using bacterial EPS, offering an effective strategy for antibiofilm applications.

Downloads

Download data is not yet available.

Author Biography

  • Riyanki Das, Department of Nanotechnology, North Eastern Hill University, Shillong - 793 022, Meghalaya (India)

    Microbial Biotechnology Lab, Department of Medical Laboratory Technology, Women’s Polytechnic,  Hapania - 799 130, Tripura (India) 

     

References

1. Armbruster, C.R., Lee, C.K., Parker-Gilham, J., de Anda, J., Xia, A., Zhao, K., et al. (2019). Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations. Elife, 8, e45084. [https://doi.org/10.7554/eLife.45084]

2. Bunjes, H., & Unruh, T. (2007). Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Advanced Drug Delivery Reviews, 59(6), 379–402.

3. Bustamante-Torres, M., Romero-Fierro, D., Estrella-Nuñez, J., Arcentales-Vera, B., Chichande Proaño, E., & Bucio, E. (2022). Polymeric composite of magnetite iron oxide nanoparticles and their application in biomedicine: A review. Polymers, 14(4), 752. [https://doi.org/10.3390/polym14040752]

4. Das, M.C., Samaddar, S., Jawed, J.J., Ghosh, C., Acharjee, S., Sandhu, P., et al. (2022). Vitexin alters Staphylococcus aureus surface hydrophobicity to obstruct biofilm formation. Microbiological Research, 263, 127126. [https://doi.org/10.1016/j.micres.2022.127126]

5. Edet, U.O., Bassey, I.U., & Joseph, A.P. (2023). Heavy metal co-resistance with antibiotics amongst bacteria isolates from an open dumpsite soil. Heliyon, 9(2), e13457. [https://doi.org/10.1016/j.heliyon.2023.e13457]

6. Erega, A., Stefanic, P., Dogsa, I., Danevčič, T., Simunovic, K., & Klančnik, A. (2021). Bacillaene mediates the inhibitory effect of Bacillus subtilis on Campylobacter jejuni biofilms. Applied and Environmental Microbiology, 87(12), e0295520. [https://doi.org/10.1128/AEM.02955-20]

7. Garza-Cervantes, J.A., Escárcega-González, C.E., Barriga Castro, E.D., Mendiola-Garza, G., Marichal-Cancino, B.A., López-Vázquez, M.A., et al. (2019). Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent. International Journal of Nanomedicine, 14, 2557–2571.

8. Dey, G., Patil, M.P., Banerjee, A., Sharma, R.K., Banerjee, P., Maity, J.P., et al. (2023). The role of bacterial exopolysaccharides (EPS) in the synthesis of antimicrobial silver nanomaterials: A state-of-the-art review. Journal of Microbiological Methods, 212, 106809. [https://doi.org/10.1016/j.mimet.2023.106809]

9. Grégorio, C., Harmel, N.P., Frédéric, G., & Capucine, R. (2007). Removal of C.I. basic green 4 (malachite green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Separation and Purification Technology, 53(1), 97–110.

10. Jacinto, M.J., Silva, V.C., Valladão, D.M.S., & Souto, R.S. (2021). Biosynthesis of magnetic iron oxide nanoparticles: A review. Biotechnology Letters, 43(1), 1–12.

11. Kobayashi, T., Ikeda, M., Okada, Y., Higurashi, Y., Okugawa, S., & Moriya, K. (2021). Clinical and microbiological characteristics of recurrent Escherichia coli bacteremia. Microbiology Spectrum, 9(3), e0139921. [https://doi.org/10.1128/Spectrum.01399-21]

12. Kibret, M., & Abera, B. (2011). Antimicrobial susceptibility patterns of E. coli from clinical sources in northeast Ethiopia. African Health Sciences, 11 (Suppl 1), S40–S45. [https://doi.org/10.4314/ahs.v11i3.70069]

13. Li, H., Liu, H., Zhang, L., Hieawy, A., & Shen, Y. (2023). Evaluation of extracellular polymeric substances matrix volume, surface roughness and bacterial adhesion property of oral biofilm. Journal of Dental Sciences, 18(4), 1723–1730.

14. Li, J., Wang, S., Shi, X., & Shen, M. (2017). Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy. Advances in Collid and Interface Sciences, 249, 374–385.

1. Mahto, K.U., & Das, S. (2022). Bacterial biofilm and extracellular polymeric substances in the moving bed biofilm reactor for wastewater treatment: A review. Bioresource Technology, 345, 126476. [https://doi.org/10.1016/j.biortech.2021.126476]

2. Malhotra, M., Pal, M., Chakrabortty, S., & Pal, P. (2023). A single functionalized graphene nanocomposite in cross flow module for removal of multiple toxic anionic contaminants from drinking water. Environmental Science and Pollution Research International, 30(24), 65250–65266.

3. Miškovská, A., Rabochová, M., Michailidu, J., Masák, J., Čejková, A., Lorinčík, J., et al. (2022). Antibiofilm activity of silver nanoparticles biosynthesized using viticultural waste. PLOS ONE, 17(8), e0272844. [https://doi.org/10.1371/journal.pone.0272844]

4. More, P.R., Pandit, S., Filippis, A., Franci, G., Mijakovic, I., & Galdiero, M. (2023). Silver nanoparticles: Bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms, 11(2), 369. [https://doi.org/10.3390/microorganisms11020369]

5. Mudunkotuwa, I.A., Minshid, A.A., & Grassian, V.H. (2014). ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media. Analyst, 139(5), 870–881.

6. Nagao, Y., Koh, S., Taguchi, S., & Shimada, T. (2023). Cell-growth phase-dependent promoter replacement approach for improved poly(lactate-co-3-hydroxybutyrate) production in Escherichia coli. Microbial Cell Factories, 22(1), 131. [https://doi.org/10.1186/s12934-023-02143-w]

7. Nagarajan, D.R., & Krishnan, C. (2010). Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes. Protein Expression and Purification, 70(1), 122–128.

8. Nandanwar, N., Janssen, T., Kühl, M., Ahmed, N., Ewers, C., & Wieler, L.H. (2014). Extraintestinal pathogenic Escherichia coli (ExPEC) of human and avian origin belonging to sequence type complex 95 (STC95) portray indistinguishable virulence features. International Journal of Medical Microbiology, 304(7), 835–842.

9. Pandi, K., Viswanathan, N., & Meenakshi, S. (2019). Hydrothermal synthesis of magnetic iron oxide encrusted hydrocalumite-chitosan composite for defluoridation studies. International Journal of Biological Macromolecules, 132, 600–605.

10. Parulekar, R.S., Barale, S.S., & Sonawane, K.D. (2019). Antibiotic resistance and inhibition mechanism of novel aminoglycoside phosphotransferase APH(5) from B. subtilis subsp. subtilis strain RK. Brazilian Journal of Microbiology, 50(4), 887–898.

11. Petrushevska, M., Pavlovska, K., Laskova, J., Zdravkovski, P., & Dodov, M.G. (2019). Transmission electron microscopy: Novel application of established technique in characterization of nanoparticles as drug delivery systems. Prilozi (Makedon Akad Nauk Umet OddMed Nauki), 40(2), 67–72.

12. Poulose, S., Panda, T., Nair, P.P., & Théodore, T. (2014). Biosynthesis of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 14(2), 2038–2049.

13. Qin, Q., Olimov, D., & Yin, L. (2022). Semiconductor-type gas sensors based on γ-Fe₂O₃ nanoparticles and its derivatives in conjunction with SnO₂ and graphene. Chemosensors, 10(7), 267. [https://doi.org/10.3390/chemosensors10070267]

14. Raeispour, M., & Ranjbar, R. (2018). Antibiotic resistance, virulence factors and genotyping of uropathogenic Escherichia coli strains. Antimicrobial Resistance and Infection Control, 7, 118. [https://doi.org/10.1186/s13756-018-0411-4]

15. Rashid, M., Rabbi, M.A., Ara, T., Hossain, M.M., Islam, M.S., Elaissari, A., et al. (2021). Vancomycin conjugated iron oxide nanoparticles for magnetic targeting and efficient capture of Gram-positive and Gram-negative bacteria. RSC Advances, 11(57), 36319–36328.

16. Reddy, P.M., Chang, K.C., Liu, Z.J., Chen, C.T., & Ho, Y.P. (2014). Functionalized magnetic iron oxide (Fe₃O₄) nanoparticles for capturing Gram-positive and Gram-negative bacteria. Journal of Biomedical Nanotechnology, 10(8), 1429–1439.

17. Saravanakumar, K., Sathiyaseelan, A., Manivasagan, P., Jeong, M.S., Choi, M., Jang, E.S., et al. (2022). Photothermally responsive chitosan-coated iron oxide nanoparticles for enhanced eradication of bacterial biofilms. Biomaterials Advances, 141, 213129. [https://doi.org/10.1016/j.bioadv.2022.213129]

18. Scala, A., Piperno, A., Hada, A., Astilean, S., Vulpoi, A., Ginestra, G., et al. (2019). Marine bacterial exopolymers-mediated green synthesis of noble metal nanoparticles with antimicrobial properties. Polymers, 11(7), 1157. [https://doi.org/10.3390/polym11071157]

19. Swidan, N.S., Hashem, Y.A., Elkhatib, W.F., & Yassien, M.A. (2022). Antibiofilm activity of green synthesized silver nanoparticles against biofilm associated enterococcal urinary pathogens. Scientific Reports, 12(1), 3869. [https://doi.org/10.1038/s41598-022-07831-y]

20. Tetyczka, C., Hodzic, A., Kriechbaum, M., Juraić, K., Spirk, C., Hartl, S., et al. (2019). Comprehensive characterization of nanostructured lipid carriers using laboratory and synchrotron X-ray scattering and diffraction. European Journal of Pharmaceutics and Biopharmaceutics, 139, 153–160.

21. Traub, W.H., Leonhard, B., & Bauer, D. (1998). Antibiotic susceptibility of Stenotrophomonas (Xanthomonas) maltophilia: Comparative (NCCLS criteria) evaluation of antimicrobial drugs with the agar dilution and the agar disk diffusion (Bauer-Kirby) tests. Chemotherapy, 44(3), 164–173.

22. Yadwade, R., Kirtiwar, S., & Ankamwar, B. (2021). A review on green synthesis and applications of iron oxide nanoparticles. Journal of Nanoscience and Nanotechnology, 21(12), 5812–5834.

23. Yasemin, B., & Haluk, A. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1–3), 259–267.

Published

2025-08-07

How to Cite

BACTERIAL EXOPOLYSACCHARIDE-MEDIATED GREEN SYNTHESIS OF IRON OXIDE NANOPARTICLE AND ITS EFFECT ON BACTERIAL BIOFILM. (2025). Applied Biological Research, 27(2), 244-255. https://doi.org/10.48165/abr.2025.27.01.24