DIAGNOSIS OF β-THALASSEMIA TRAIT (βTT) IN IRAQI PATIENTS: HEMOGLOBIN A2 (HbA2) AND BIOCHEMICAL APPRAISAL
DOI:
https://doi.org/10.48165/abr.2025.27.01.53Keywords:
β-thalassemia, complete blood count, hemoglobin A2 (HbA2), serum ferritinAbstract
The most frequent forms of α- and β-degenerate anaemias are characterized by disruption in the formation of globin protein, leading to defective hemoglobin synthesis known as thalassemia, a prevalent hereditary blood disorder. The present study aimed to diagnose hemoglobin A₂ (HbA₂) levels in patients with thalassemia in order to provide a reference for improving thalassemia control strategies. Data were collected from 155 thalassemia patients attending Baghdad Medical City between November 2024 and March 2025. Hematological parameters including red blood cell count (RBC), hemoglobin (Hb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), hemoglobin A (HbA), hemoglobin A₂ (HbA₂), and fetal hemoglobin (HbF) were analyzed, and relationships among these parameters were evaluated. High-performance liquid chromatography (HPLC) results showed that thalassemia patients had significantly higher mean levels of HbA₂, HbA, and HbF (P ≤ 0.01) compared with the control group. Correlation analysis revealed no significant association between serum ferritin and RBC count in the HbA₂ patient group (P ≤ 0.01). The findings indicate that individuals with β-thalassemia trait typically exhibit normal serum ferritin levels, mildly elevated red blood cell counts, and increased HbA₂ levels.
Downloads
References
Amin, S. S., Jalal, S. D., Ali, K. M., Mohammed, A. I., Rasool, L. K., & Osman, T. J. (2020). Beta thalassemia intermedia: A single thalassemia center experience from Northeastern Iraq. BioMed Research International, 2020, 2807120. https://doi.org/10.1155/2020/2807120
Anandani, G., Motiani, A., Goswami, P., & Sonagra, A. (2025). Challenges associated with the identification of abnormal hemoglobin variants utilizing the high-performance liquid chromatography technique: A prospective study in a hospital setting in Gujarat. International Journal of Applied and Basic Medical Research, 15(3), 197–205.
Begum, R., Suryanarayana, G., Rama, B. S., & Swapna, N. (2024). An overview of thalassemia: A review work. Artificial Intelligence, Blockchain, Computing and Security, 1, 796–804.
Brancaleoni, V., Di Pierro, E., Motta, I., & Cappellini, M. D. (2016). Laboratory diagnosis of thalassemia. International Journal of Laboratory Hematology, 38(Suppl. 1), 32–40.
Colaco, S., & Nadkarni, A. (2021). Borderline HbA₂ levels: Dilemma in diagnosis of beta thalassemia carriers. Mutation Research/Reviews in Mutation Research, 788, 108387. https://doi.org/10.1016/j.mrrev.2021.108387
El-Beshlawy, A., Dewedar, H., Hindawi, S., Alkindi, S., Tantawy, A. A., Yassin, M. A., et al. (2024). Management of transfusion-dependent β-thalassemia (TDT): Expert insights and practical overview from the Middle East. Blood Reviews, 63, 101138. https://doi.org/10.1016/j.blre.2023.101138
Gao, J., & Liu, W. (2022). Advances in screening of thalassaemia. Clinica Chimica Acta, 534, 176–184.
Hassan, M. K., Abbas, R. A., Hassan, R. A., Taghlubee, I. M., Abd Al Majeed, S. S., Khaleel, G. A., et al. (2024). Prevalence and spectrum of β-thalassemia mutations in Baghdad, Iraq: Data from the premarital screening program. Hemoglobin, 49(1), 31–37.
Jarujareet, U., Wiratchawa, K., Petiwathayakorn, T., Koonyosying, P., Hantrakool, S., Srichairatanakool, S., et al. (2025). Classification of beta-thalassemia major and HbE/beta-thalassemia via deep learning of image structure function images. Biomedical Signal Processing and Control, 102, 107265. https://doi.org/10.1016/j.bspc.2024.107265
Kadhim, K. A., Baldawi, K. H., & Lami, F. H. (2017). Prevalence, incidence, trend, and complications of thalassemia in Iraq. Hemoglobin, 41(3), 164–168.
Kattamis, A., Forni, G. L., Aydinok, Y., & Viprakasit, V. (2020). Changing patterns in the epidemiology of β-thalassemia. European Journal of Haematology, 105(6), 692–703.
Marasinghe, M. G., & Koehler, K. J. (2018). Introduction to the SAS language. In Statistical data analysis using SAS: Intermediate statistical methods (pp. 1–68). Springer. https://doi.org/10.1007/978-3-319-69239-5_1
Mohanty, D., Colah, R. B., Gorakshakar, A. C., Patel, R. Z., Master, D. C., Mahanta, J., et al. (2013). Prevalence of β-thalassemia and other haemoglobinopathies in six cities in India: A multicentre study. Journal of Community Genetics, 4, 33–42.
Mosca, A., Paleari, R., Ivaldi, G., Galanello, R., & Giordano, P. C. (2009). The role of haemoglobin A₂ testing in the diagnosis of thalassaemias and related haemoglobinopathies. Journal of Clinical Pathology, 62(1), 13–17.
Obiorah, I., McCall, C. M., Balmaceda, A., Salansky, S., Agarwal, A., & Pozdnyakova, O. (2025). An 18-year review of hemoglobinopathy proficiency testing: Recommendations from the College of American Pathologists Hematology and Clinical Microscopy Committee. Archives of Pathology & Laboratory Medicine, 149(9), 805–811.
Origa, R. (2017). β-Thalassemia. Genetics in Medicine, 19(6), 609–619.
Qian, H., Zhao, W., Li, W., Wu, Y., Lin, X., Huang, J., et al. (2025). Analysis of thalassemia genotypes and HbA₂ test results in pregnant women in Shenzhen, China. Scientific Reports, 15(1), 7483.
Rao, E., Chandraker, S. K., Singh, M. M., & Kumar, R. (2024). Global distribution of β-thalassemia mutations: An update. Gene, 896, 148022. https://doi.org/10.1016/j.gene.2023.148022
Venou, T. M., Barmpageorgopoulou, F., Peppa, M., & Vlachaki, E. (2024). Endocrinopathies in beta-thalassemia: A narrative review. Hormones, 23(2), 205–216.
Zhang, Y., Wu, J., Ren, L., Li, F., Wu, X., Guo, M., et al. (2025). Large-scale analysis of the thalassemia mutation spectrum in Guizhou province, Southern China, using third-generation sequencing. Clinical Genetics, 108(2), 156–167.

