Buffalo Bull Fertility: Key Factors and Predictive Markers
DOI:
https://doi.org/10.48165/aru.2025.5.2.3Keywords:
Artificial insemination efficiency, Buffalo bull fertility, Semen quality, Seminal plasma biomarkers, Proteomics and transcriptomicsAbstract
Buffalo bull fertility is pivotal to reproductive success and genetic improvement in the dairy sector, especially in regions with high buffalo populations such as India. Despite their economic importance, reproductive inefficiencies, most notably low conception rates after artificial insemination, remain major challenges. Male fertility is a complex trait influenced by sperm quality, seminal plasma composition, hormonal and biochemical profiles, genetic determinants, and environmental factors. Key functional markers associated with high fertility include elevated sperm motility (total 77.6%, progressive 73.73%), membrane and acrosome integrity (74.17% and 92.83%, respectively) in fertile bulls versus significantly lower values in sub-fertile animals. Important seminal plasma biochemical markers such as follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, insulin-like growth factor-1 (IGF-1) are all higher in fertile buffalo bulls, for example, LH at 0.28 ± 0.02 mU/ mL and testosterone at 0.53 ± 0.02 ng/mL in fertile animals. Fertile bulls also show superior antioxidant capacity (TAC, catalase, glutathione peroxidase, and nitric oxide) and lower oxidative stress marker malondialdehyde (MDA). Proteomic studies have identified differentially abundant sperm proteins such as AKAP3, AKAP4, Sp17, and PDIA3 (upregulated in high fertility) while DLD is downregulated, all strongly linked to sperm motility, structural integrity, and zona pellucida binding. Transcriptomic profiling further highlights up-regulated hub genes (e.g., RPL36AL, EIF5A, RPLP0) as promising molecular markers for sperm quality and fertility assessment. Integrating conventional semen analysis with molecular technologies, including omics-based biomarker identification, offers improved accuracy in fertility prediction and supports effective selection of breeding bulls. These strategies are essential for optimizing reproductive outcomes, minimizing economic losses, and advancing sustainable buffalo productivity.
References
Ahmed H, Jahan S, Khan A, Khan L, Khan BT, Ullah H, Ullah K. Supplementation of green tea extract (GTE) in extender improves structural and functional characteristics, total antioxidant capacity and in vivo fertility of buffalo (Bubalus bubalis) bull spermatozoa. Theriogenology. 2020;145:190–197. doi:10.1016/j.theriogenology.2019.10.024.
Almadaly E, El-Kon I, Heleil B, Fattouh ES, Mukoujima K, Ueda T, Murase T. Methodological factors affecting the results of staining frozen–thawed fertile and subfertile Japanese Black bull spermatozoa for acrosomal status. Anim Reprod Sci. 2012;136(1-2):23–32. doi:10.1016/j.anireprosci.2012.10.016.
Almadaly EA, Abdel-Salam ABS, Sahwan FM, Kahilo KA, Abouzed TK, El-Domany WB. Fertility-associated biochemical components in seminal plasma and serum of buffalo (Bubalus bubalis) bulls. Front Vet Sci. 2023;9:1043379. doi:10.3389/fvets.2022.1043379.
Amann RP, Waberski D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology. 2014;81(1):5–17. doi:10.1016/j.theriogenology.2013.09.004.
Arangasamy A, Kasimanickam VR, DeJarnette JM, Kasimanickam RK. Association of CRISP2, CCT8, PEBP1 mRNA abundance in sperm and sire conception rate in Holstein bulls. Theriogenology. 2011;76(3):570–577. doi:10.1016/j.theriogenology.2011.03.009.
Aslam MKM, Kumaresan A, Yadav S, Mohanty TK, Datta TK. Comparative proteomic analysis of high‐ and low‐fertile buffalo bull spermatozoa for identification of fertility‐associated proteins. Reprod Domest Anim. 2019;54(5):786–794. doi:10.1111/rda.13426.
Assumpcao TI, Fontes W, Sousa MV, Ricart CAO. Proteome analysis of Nelore bull (Bos taurus indicus) seminal plasma. Protein Pept Lett. 2005;12(8):813–817. doi:10.2174/0929866054864292.
Batra V, Dagar K, Nayak S, Kumaresan A, Kumar R, Datta TK. A higher abundance of O-linked glycans confers a selective advantage to high fertile buffalo spermatozoa for immune-evasion from neutrophils. Front Immunol. 2020;11:1928. doi:10.3389/fimmu.2020.01928.
Bissonnette N, Lévesque-Sergerie JP, Thibault C, Boissonneault G. Spermatozoal transcriptome profiling for bull sperm motility: a potential tool to evaluate semen quality. Reproduction. 2009;138(1):65–80. doi:10.1530/REP-08-0503.
Card CJ, Anderson EJ, Zamberlan S, Krieger KE, Kaproth M, Sartini BL. Cryopreserved bovine spermatozoal transcript profile as revealed by high-throughput ribonucleic acid sequencing. Biol Reprod. 2013;88(2):49. doi:10.1095/biolreprod.112.103788.
Contri A, Valorz C, Faustini M, Wegher L, Carluccio A. Effect of semen preparation on CASA motility results in cryopreserved bull spermatozoa. Theriogenology. 2010;74(3):424–435. doi:10.1016/j.theriogenology.2010.02.025.
DAHD and F, Ministry of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture, Government of India. 2012–2013. p15.
de Lamirande E, Cagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med. 1993;14(2):157–166. doi:10.1016/0891-5849(93)90006-G.
De Oliveira RV, Dogan S, Belser LE, Kaya A, Topper E, Moura A, Memili E. Molecular morphology and function of bull spermatozoa linked to histones and associated with fertility. Reproduction. 2013;146(3):263–272. doi:10.1530/REP-12-0399.
Divyashree BC, Roy SC. Species-specific and differential expression of BSP-5 and other BSP variants in normozoospermic and asthenozoospermic buffalo (Bubalus bubalis) and cattle (Bos taurus) seminal plasma. Theriogenology. 2018;106:279–286. doi:10.1016/j.theriogenology.2017.10.014.
Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry EJ. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity. 2012;37(6):1130–1144. doi:10.1016/j.immuni.2012.08.021.
Doumas BT, Biggs HG, Arends RL, Pinto PV. Determination of serum albumin. In: Standard Methods of Clinical Chemistry. Vol. 7. Elsevier; 1972. p.175–188. doi:10.1016/B978-0-12-609107-6.50022-2.
Enciso M, Cisale H, Johnston SD, Sarasa J, Fernández JL, Gosálvez J. Major morphological sperm abnormalities in the bull are related to sperm DNA damage. Theriogenology. 2011;76(1):23–32. doi:10.1016/j.theriogenology.2010.12.034.
Esteves SC, Sharma RK, Thomas AJ Jr, Agarwal A. Evaluation of acrosomal status and sperm viability in fresh and cryopreserved specimens by the use of fluorescent peanut agglutinin lectin in conjunction with hypo-osmotic swelling test. Int Braz J Urol. 2007;33:364–376. doi:10.1590/S1677-55382007000300009.
Ferraz MD, Simões R, de Oliveira Barros F, Millazzoto MP, Visintin JA, Assumpção ME. Gene expression profile of protamines and transition nuclear proteins in bovine testis. Braz J Vet Res Anim Sci. 2013;50(4):316–322.
Francis GL, Upton FM, Ballard FJ, McNeil KA, Wallace JC. Insulin-like growth factors 1 and 2 in bovine colostrum. Biochem J. 1988;251(1):95–103. doi:10.1042/bj2510095.
Fu Q, Pan L, Huang D, Wang Z, Hou Z, Zhang M. Proteomic profiles of buffalo spermatozoa and seminal plasma. Theriogenology. 2019;134:74–82. doi:10.1016/j.theriogenology.2019.05.013.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Animal Reproduction Update

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

