Research Article

Don Bosco Institute

of Technology Delhi Journal of Research

Year 2025, Volume-2, Issue-2 (Jul-Dec)

Assessing Interface Depe
Software Systems (CBSS)
Rachit Kadian

Research Scholar, Amity University, Gurugram

ndency Complexity in Components based

ARTICLE INFO

ABSTRACT

Keywords: Software Complexity,
Software metric, Information
flow, Traditional metrics, CBSS

doi: 10.48165/dbitdjr.2025.2.02.03

Systems with high complexity typically exhibit a balanced combination of order
and disorder, characterized by the coexistence of randomness and regularity. In
component-based software engineering, each component contributes to overall
system complexity through its inherent constraints, interaction mechanisms with
other components, and the degree of customizability it supports. As software
systems grow in scale and interconnectivity, understanding and managing such
complexity becomes critical to ensuring system reliability, maintainability, and
quality. Measuring system dependency and interaction complexity provides valuable
insights into potential design weaknesses and helps assess software quality at both
component and system levels. Complexity metrics play a crucial role in enabling
objective comparison across different software systems by applying standardized
measurement frameworks. Existing complexity measures, however, often focus
primarily on internal code structure, overlooking the significance of component
interfaces that govern communication, data exchange, and functional coordination.
The author has pointed out a novel interface complexity metric for software
components in the study. Based on the quantity, kind, and structural features of
interface methods and attributes that a component exposes, the suggested metric
measures complexity. Factors such as method signatures, parameter types, data
dependencies, access constraints, and interaction frequency are considered to
capture the true interaction burden imposed by component interfaces. By focusing
on interface-level complexity, the metric provides a more accurate representation
of component interdependencies and their impact on overall system behaviour.
The proposed approach supports improved software design evaluation, facilitates
early detection of architectural vulnerabilities, and aids developers in enhancing
modularity, reusability, and long-term system quality.

Introduction

programming tasks is software complexity.” Each component
of a CBS’s framework plays a specific purpose in the services

Software complexity is defined as follows: “A software provided by the system. The system’s overall functionality
complexity is a term that encompasses numerous properties changes as soon as a new component is added. Shorter
of a piece of software, all of which affect internal interactions” delivery deadlines and lower development costs are the
One common term used to describe “the relationship advantages of component-based development.

between a program and a programmer

‘Corresponding author.

working on certain e« Lower maintenance expenses and increased dependability

E-mail address: rachitkadian0707@gmail.com
Copyright @ DBITDJR (https://acspublisher.com/journals/index.php/dbaskdf)

Kadian et al.

{ Allows developers to concentrate on their primary skills
and business requirements instead of repeatedly resolving
the same technical issues.

« Offers extensibility since parts can be put together in a
variety of ways to create distinct system variations as needed.
These days, this is particularly prevalent in sectors like
consumer electronics, automotive systems, and cellular
technologies.

o It is possible to mix and match components that employ
various languages and technologies.

« Component-based development is the most effective
method for handling system complexity as it grows in size
and scope. Higher level models make complicated systems
easier to comprehend. Current systems are constantly being
updated and modified, which leads to dependency problems.
Junk libraries and files may still be present in the system even
after special uninstall processes have been carried out to get
rid of the problematic application. The primary reason for
these issues is the absence of mechanisms for managing
dependencies between system and application components
as well as a representation model for such dependencies. An
essential component of software research for a component-
based system’s comprehensibility, testability, maintainability,
and reusability is the analysis of CBSS dependencies.
Dependency metrics may therefore have a significant effect
on the system’s quality that is provided to the user.

Literature Review

Comparing Component-Based System
Metrics with Conventional Software Met-
rics

Tagen et al.,, 2025 stated that Component-based software
systems (CBSS) have become increasingly popular among
academics and professionals. CBSS can improve productivity,
quality, and reusability while lowering time-to-market and
maintenance costs by constructing software from reusable
components. Developers may concentrate on particular
features thanks to this modular approach, which results
in codebases that are more effective and maintainable.
However, because the elements affecting dependability
are complicated and frequently only their impacts are
visible, assessing a CBSS’s reliability presents difficulties.
This complexity is a result of the different operational
profiles, interactions between the separate components,
and their integration into the overall architecture. In order
to conform with component-based software development,
traditional metrics must be improved or reinterpreted.
Since 1976, structured systems’ software complexity has
been measured using traditional measures. Some common
traditional software metrics include the following:

Assessing Interface Dependency Complexity in Components....

Cyclomatic complexity - To evaluate the structural complexity
of software modules, in 1976, McCabe introduced a metrics
named “cyclomatic complexity”. According to Watson et al.,
1996 and Siahaan et al., 2025, a program’s control flow graph
can be used to calculate the number of linearly independent
pathways, which provides a clear indicator of the complexity
of decision-making inside a code module.

SLOC - Source lines of code assess a project based on code
volume. We use physical SLOC to count code lines, excluding
comments and blank lines (Li et al., 2025).

function point analysis (FPA) - FPs gauge a project’s size
from a functional standpoint. FPs examine how a software
interacts with users and are independent of language.
Function points include things like data structures, input,
user’s interaction, output, documents and the software’s links
to various systems (Wicaksono & Sandaa, 2024).

bugs per lines of code - The term “bugs per lines of code”
(sometimes called “defect density”) is used to calculate the
number of proven problems in relation to the software’s size.
It is commonly stated as bugs per thousand lines of code
(KLOC).

code coverage - A testing statistic called “code coverage”
calculates the proportion of the codebase that is run during
testing.

Traditional software metrics are usually applicable to
small programs, while CBSS measures should be based
on the resolution and interoperable characteristics of the
components. While most standard size measurements, such
as code coverage and source lines of code are dependent on
code line. Additionally, component developers typically do
not know the size of a component. This do not apply on the
software of component-based system.

The conventional cyclomatic complexity metric suite is
likewise not relevant in CBSS as the number of linearly
independent paths cannot be ascertained and operator and
operand counts are unknown. Although certain enhanced
measures, such as modifying the counting method, have
been used, FPA is dependent on the weights that were
generated in a specific setting, raising questions regarding
the validity of this method for widespread applicability.
The usual software measurements are not relevant for CBSS
due to the numerous intrinsic differences between CBSS
and non-CBSS. Furthermore, standard software measures
do not account for integration-level metrics and interface
complexity, both of which are equally irrelevant to CBSS.

Software complexity’s Nature

Most software metrics experts concur that the number of
resources needed for a project is directly correlated with its
complexity. The concept is that a more complex problem
or solution calls for additional project resources, including
man-hours, computer time, support software, etc. Since a
large number of resources are used to find errors, debug, and
retest software, the number of defects is a linked indication

16

Kadian et al.

of complexity. Based on the literature available (Zuse, 1991;
Fenton & Pfleeger, 1996; Ohlsson, 1996), we would like to
suggest that software complexity consists of the following
elements:

1. Algorithmic Complexity of the algorithm applied to
solve the problem that is reflected in its complexity. This is the
application of the concept of efficiency. By empirically testing
different algorithms, we can ascertain which approach offers
the most efficient solution to the problem and, thus, has the
least amount of extra complexity. This kind of complexity can
be measured as soon as a solution’s algorithm is developed,
typically during the design stage. However, algorithmic
complexity has historically been measured on code since the
mathematical structure is more visible in code.

2. The problem complexity (also known as computational
complexity) quantifies the intricacy of the underlying
problem. When the problem is defined at the requirements
phase, this kind of complexity can be found. If the problem
can be explained by using algorithms and functions, it is also
feasible to compare many problems with one another and
determine which is the most complex.

3. The algorithms implementation software’s structure
is measured by structural complexity. Researchers and
practitioners have long acknowledged that there might be a
connection between a product’s quality and its structure. To
put it another way, the structure of specifications, the design,
and source code may help us understand the difficulties
we sometimes encounter when testing a product such as
validating requirements or code testing, converting one
product to another (e.g., implementing a design as a source
code), or forecasting external software attributes from early
product measures.

4. Cognitive complexity measures the amount of work
required to understand the software. It has to do with
how a system is seen psychologically or how tough it is to
implement or finish. However, as psychological researchers
and scientists are particularly interested in investigating this
element of complexity, we are not including it in our paper.
But it's important to understand that the way people think is
a constraint on the creation of software and that it influences
the program’s attributes that we want to evaluate, including
quality and productivity.

Structural Algorithmic
Complexity complexity

Error
Proneness

| !

Quality Productivity

Fig.1 Simplified model of complexity
Source: Author’s own

Assessing Interface Dependency Complexity in Components....

Component’s Complexity

Many scholars have defined software complexity differently
in the literature. According to IEEE, software complexity is
“the degree to which a system or component has a design
or implementation that is difficult to understand and verify”
Complexity is quantified through the lens of the processing
duration and storage required to finish a computation when
a computer operates as an interacting system. Numerous
researchers have occasionally put forth different measures
for assessing, forecasting, and managing software complexity.
Since 1976, the software complexity of structured systems
has been measured using traditional software metrics.
Halstead’s software science metrics, SLOC, McCabe’s
cyclomatic number, FPA, errors or faults per line of code,
and Kafura & Henry’s fan-in, fan-out, and code coverage
are the most well-known early reported complexity metrics
for the traditional function-oriented approach. Bill Curtis
distinguishes between mathematical and psychological
software complexity. Programmers’ attempts to comprehend
or modify a class or module are influenced by psychological
complexity, whereas algorithmic or computational complexity
characterizes an algorithm’s run-time performance. Software
complexity cannot be determined using just one parameter
of a program, component, or piece of software since it is
a complicated property of software. The primary factors
that increase the complexity of a (CBSS) component-based
software system are as follows:

Size of each component: The size of a program, class, or
component also affects its complexity.

Since a class with more methods is harder to understand
than one with fewer, it adds additional complexity. Large
programs or components have issues simply because of the
amount of information needed to comprehend them and the
additional resources required for their upkeep. Therefore,
one aspect that increases a component’s complexity is its size.
Interfaces of each component: A component in CBSD has
interfaces with other components because it is related to them.
If there is a link between two or more components—that is,
when one component sends a message and other aspects
receive it—they are said to be interfaced. Which component
depends on the other or seeks services is indicated by the
link’s direction. Incoming and outgoing interactions can be
used as an interface between two components. A component-
based software system is made more complex by these two
kinds of interactions.

Interfaces are a component’s access points that enable
an aspect to reach out for a service that is specified in the
service providers interface. The mathematical definition
of I (Component) is the entire complexity of the interface
methods in the class. The complexity of interface approaches
is based on their nature. The interface methods’ nature is
defined by their arguments and return types. Arguments and
return types can be any of the three previously discussed data
types: primitive, structured and user-defined—that were

17

Kadian et al.

previously covered can be used in arguments and return
types. By taking into account the overall number of methods
in each category, these methods can be given weight values.
The value assigned will likewise rise if there are more methods
than the weight. It is now possible to mathematically express
the Interface Factor, or I (Component), as follows:

I (Component) =

ml 5
E:=:“::n;.-.|;{

Tml

it L

m1 ' 1
35 E__-:l Womadium 1 W eomplex,

The above algorithm represents that- m1, m2, and m3 stand
for the total number of interaction techniques that are simple,
medium, and complex, respectively.

An interface complexity metric for a component-based

system that solely considers interface complexity is proposed
as follows:

Erél '{Iz
AlIC = m
(AIIC - Average Incoming Interactions Complexity)
;’3’; 1 o Ii
AOIC= 2

(AOIC - Average Outgoing Interactions Complexity)
Average Interface Complexity of a Component Based System
(CBSS)=(AIC(CBS)) = £=.m , Z2Z oy
Therefore, ‘M’ is the Component-based System’s (CBS)
component count.

Incoming Interactions is represented by ‘II

Outing Interactions is what ‘OI” stands for.

T is an acronym for index variable.

m

Conclusion

In order to describe and assess dependence connections
between components in CBSS- Component-Based Software
Systems, a comprehensive set of metrics was developed
in this work. The proposed metrics enable designers to
identify critical components that are more prone to errors
and assess the impact of changes across the entire system.
By quantifying component dependencies, the approach
supports informed decision-making regarding corrective
modifications and helps improve overall design quality,
maintainability, and reliability. The use of a linked list-
based approach, along with the concept of a component
dependency life cycle, provides a structured and systematic
way to represent, understand, and manage inter-component
dependencies. This method offers a clear visualization of
dependency propagation and facilitates better control over
component interactions during system evolution. Given the
inherent complexity of large-scale CBSS, manual calculation
of dependencies across multiple levels is neither efficient nor
practical. Therefore, the need for an automated tool becomes
essential to accurately compute dependency metrics at all
levels and support real-time design evaluation. Automation

18

Assessing Interface Dependency Complexity in Components....

not only improves accuracy but also enhances scalability and
usability for practitioners.

Implications of the Study

For Component-Based Software Systems (CBSS), this work
has significant theoretical, practical, and methodological
ramifications. By highlighting component dependency and
interface-level interactions as crucial factors influencing
system quality, it theoretically advances software complexity
research by going beyond conventional code-centric
complexity metrics. In order to improve maintainability and
overall software quality, software designers and architects
can use the suggested dependency metrics to identify crucial
and error-prone components, evaluate the impact of changes,
and prioritize components that need to be redesigned or
refactored. Effective dependency control during system
evolution is supported by the linked list-based dependency
modelling approach, which offers a manageable and
transparent depiction of dependent connections. In terms
of methodology, the study provides a common framework
for quantifying component dependencies, making it easier
to compare CBSS designs objectively and promoting the
creation of automated tools for scale dependency analysis.

Future Research Direction

Future research can focus on developing a fully automated
dependency analysis tool integrated with modern
development environments. Further extensions may
include empirical validation of the proposed metrics on
large industrial systems, incorporation of dynamic runtime
dependencies, and the application of machine learning
techniques to predict fault-prone components. Additionally,
exploring the interaction between dependency metrics and
software quality traits such as versatility, maintainability, and
efficiency further strengthen the practical relevance of this
work.

References

C. Szyperski, Component Software: Beyond Object Oriented

Programming, Second Editioned, Addison Wesley, New York,

2002,

Narasimhan and B. Hendradjaya, “Some theoretical
considerations for a suite of metrics for the integration of
software components,” Information Sciences, vol.177, 2007,
pp. 844-64

B. Li, “ Managing dependencies in component-based systems
based onmatrix model,” Proc. Proceedings Of Net. Object.

Days, Citeseer, 2003, pp.22-25

Kadian et al.

A. Sharma, PS. Grover and R. Kumar, “Dependency analysis
forcomponent-based software systems,” SIGSOFT Softw. Eng.
Notes, vol.34, 2009, pp. 1-6

Singh, R., Grover, P.S. (1997): A New Program Weighted Complexity
Metric, Proc. International conference on Software Engg.
(CONSEG’97), Chennai, India, pp. 33- 39.

Harrison, W. (1982). Magel, K, Kluezny, R., dekock, A.: Applying
Software Complexity Metrics to Program Maintenance, IEEE
Computer, 15, pp. 65-79.

A. De Lucia, AR. Fasolino and M. Munro, “Understanding

»
>

functionbehaviors through program slicing,” wpc, 1996, pp. 9.

S. Bates and S. Horwitz, “ Incremental program testing using
programdependence graphs,” Proc. Proceedings of the
20th ACM SIGPLANSIGACT symposium on Principles of
programming languages, ACM,1993, pp.384-396

Halstead, M.H. (1977): Elements of Software Science, New York:
Elsevier North Holland.

Chidamber, S. R., Kemerer, C.E (1994): A Metrics Suite for Object
Oriented Design, IEEE Transactions on Software Engineering,
pp. 476-492.

Kafura, D., Henry, S., 1981. Software Quality Metrics, Based on
Interconnectivity, Journal of Systems and Software. Vol. 2, pp:
121-131.

Li, B., Zhong, D., Nadendla, D., Terceros, G., Bhandar, P, &
Nicholas, C. (2025). MASCOT: Analyzing Malware Evolution
Through a Well-Curated Source Code Dataset. arXiv preprint
arXiv:2512.00741.

Assessing Interface Dependency Complexity in Components....

Watson, A. H., Wallace, D. R., & McCabe, T. J. (1996). Structured
testing: A testing methodology using the cyclomatic complexity
metric (Vol. 500, No. 235). US Department of Commerce,
Technology Administration, National Institute of Standards
and Technology.

Siahaan, V., Ginting, H., & Amri, M. (2025). Cyclomatic Complexity
and Maintainability in Modern Software: A Systematic
Review. Journal of Data Science, Technology, and Computer
Science, 5(1), 8-16.

N. E. Fenton and S. L. Pfleeger, “Software Metrics, A Rigorous and
Practical Approach,” 2nd Edition, International Thomson
Computer Press, Boston, 1996.

Zuse, H. (1991). Software Complexity: Measures and Methods. Berlin,
Boston: De Gruyter. https://doi.org/10.1515/9783110866087

Ohlsson, S. (1996). Learning from performance errors. Psychological
Review, 103(2), 241-262. https://doi.org/10.1037/0033-

Wicaksono, S. R., & Sandaa, I. E. E. (2024). Function Point Analysis

for Quality Evaluation of a Natural Resource Information

System in Bulungan Regency. In Proceedings of the National
Conference on Electrical Engineering, Informatics, Industrial
Technology, and Creative Media (Vol. 4, No. 1, pp. 1163-1172).

Tagen, I. A., Wassef, K. T., Moawad, R., & Mohammad, S. S.
(2025). Software Reliability Estimation of Component-Based
Systems. IEEE Access.

19

https://doi.org/10.1515/9783110866087
https://psycnet.apa.org/doi/10.1037/0033-295X.103.2.241
https://psycnet.apa.org/doi/10.1037/0033-295X.103.2.241

