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ABSTRACT
Systems with high complexity typically exhibit a balanced combination of order 
and disorder, characterized by the coexistence of randomness and regularity. In 
component-based software engineering, each component contributes to overall 
system complexity through its inherent constraints, interaction mechanisms with 
other components, and the degree of customizability it supports. As software 
systems grow in scale and interconnectivity, understanding and managing such 
complexity becomes critical to ensuring system reliability, maintainability, and 
quality. Measuring system dependency and interaction complexity provides valuable 
insights into potential design weaknesses and helps assess software quality at both 
component and system levels. Complexity metrics play a crucial role in enabling 
objective comparison across different software systems by applying standardized 
measurement frameworks. Existing complexity measures, however, often focus 
primarily on internal code structure, overlooking the significance of component 
interfaces that govern communication, data exchange, and functional coordination.
The author has pointed out a novel interface complexity metric for software 
components in the study. Based on the quantity, kind, and structural features of 
interface methods and attributes that a component exposes, the suggested metric 
measures complexity. Factors such as method signatures, parameter types, data 
dependencies, access constraints, and interaction frequency are considered to 
capture the true interaction burden imposed by component interfaces. By focusing 
on interface-level complexity, the metric provides a more accurate representation 
of component interdependencies and their impact on overall system behaviour. 
The proposed approach supports improved software design evaluation, facilitates 
early detection of architectural vulnerabilities, and aids developers in enhancing 
modularity, reusability, and long-term system quality.

Introduction
Software complexity is defined as follows: “A software 
complexity is a term that encompasses numerous properties 
of a piece of software, all of which affect internal interactions”. 
One common term used to describe “the relationship 
between a program and a programmer working on certain 

programming tasks is software complexity.” Each component 
of a CBS’s framework plays a specific purpose in the services 
provided by the system. The system’s overall functionality 
changes as soon as a new component is added. Shorter 
delivery deadlines and lower development costs are the 
advantages of component-based development.
• Lower maintenance expenses and increased dependability
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1• Allows developers to concentrate on their primary skills 
and business requirements instead of repeatedly resolving 
the same technical issues.
• Offers extensibility since parts can be put together in a 
variety of ways to create distinct system variations as needed.
These days, this is particularly prevalent in sectors like 
consumer electronics, automotive systems, and cellular 
technologies.
• It is possible to mix and match components that employ 
various languages and technologies.
• Component-based development is the most effective 
method for handling system complexity as it grows in size 
and scope. Higher level models make complicated systems 
easier to comprehend. Current systems are constantly being 
updated and modified, which leads to dependency problems. 
Junk libraries and files may still be present in the system even 
after special uninstall processes have been carried out to get 
rid of the problematic application. The primary reason for 
these issues is the absence of mechanisms for managing 
dependencies between system and application components 
as well as a representation model for such dependencies. An 
essential component of software research for a component-
based system’s comprehensibility, testability, maintainability, 
and reusability is the analysis of CBSS dependencies. 
Dependency metrics may therefore have a significant effect 
on the system’s quality that is provided to the user.

Literature Review

Comparing Component-Based System 
Metrics with Conventional Software Met-
rics
Tagen et al., 2025 stated that Component-based software 
systems (CBSS) have become increasingly popular among 
academics and professionals. CBSS can improve productivity, 
quality, and reusability while lowering time-to-market and 
maintenance costs by constructing software from reusable 
components. Developers may concentrate on particular 
features thanks to this modular approach, which results 
in codebases that are more effective and maintainable. 
However, because the elements affecting dependability 
are complicated and frequently only their impacts are 
visible, assessing a CBSS’s reliability presents difficulties.  
This complexity is a result of the different operational 
profiles, interactions between the separate components, 
and their integration into the overall architecture. In order 
to conform with component-based software development, 
traditional metrics must be improved or reinterpreted. 
Since 1976, structured systems’ software complexity has 
been measured using traditional measures. Some common 
traditional software metrics include the following: 

Cyclomatic complexity – To evaluate the structural complexity 
of software modules, in 1976, McCabe introduced a metrics 
named “cyclomatic complexity”. According to Watson et al., 
1996 and Siahaan et al., 2025, a program’s control flow graph 
can be used to calculate the number of linearly independent 
pathways, which provides a clear indicator of the complexity 
of decision-making inside a code module.  
SLOC - Source lines of code assess a project based on code 
volume. We use physical SLOC to count code lines, excluding 
comments and blank lines (Li et al., 2025).
function point analysis (FPA) - FPs gauge a project’s size 
from a functional standpoint. FPs examine how a software 
interacts with users and are independent of language. 
Function points include things like data structures, input, 
user’s interaction, output, documents and the software’s links 
to various systems (Wicaksono & Sandaa, 2024).
bugs per lines of code – The term “bugs per lines of code” 
(sometimes called “defect density”) is used to calculate the 
number of proven problems in relation to the software’s size. 
It is commonly stated as bugs per thousand lines of code 
(KLOC).
code coverage - A testing statistic called “code coverage” 
calculates the proportion of the codebase that is run during 
testing.
Traditional software metrics are usually applicable to 
small programs, while CBSS measures should be based 
on the resolution and interoperable characteristics of the 
components. While most standard size measurements, such 
as code coverage and source lines of code are dependent on 
code line. Additionally, component developers typically do 
not know the size of a component. This do not apply on the 
software of component-based system.
The conventional cyclomatic complexity metric suite is 
likewise not relevant in CBSS as the number of linearly 
independent paths cannot be ascertained and operator and 
operand counts are unknown. Although certain enhanced 
measures, such as modifying the counting method, have 
been used, FPA is dependent on the weights that were 
generated in a specific setting, raising questions regarding 
the validity of this method for widespread applicability. 
The usual software measurements are not relevant for CBSS 
due to the numerous intrinsic differences between CBSS 
and non-CBSS. Furthermore, standard software measures 
do not account for integration-level metrics and interface 
complexity, both of which are equally irrelevant to CBSS.

Software complexity’s Nature
Most software metrics experts concur that the number of 
resources needed for a project is directly correlated with its 
complexity. The concept is that a more complex problem 
or solution calls for additional project resources, including 
man-hours, computer time, support software, etc. Since a 
large number of resources are used to find errors, debug, and 
retest software, the number of defects is a linked indication 
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of complexity. Based on the literature available (Zuse, 1991; 
Fenton & Pfleeger, 1996; Ohlsson, 1996), we would like to 
suggest that software complexity consists of the following 
elements:
1.   Algorithmic Complexity of the algorithm applied to 
solve the problem that is reflected in its complexity. This is the 
application of the concept of efficiency. By empirically testing 
different algorithms, we can ascertain which approach offers 
the most efficient solution to the problem and, thus, has the 
least amount of extra complexity. This kind of complexity can 
be measured as soon as a solution’s algorithm is developed, 
typically during the design stage. However, algorithmic 
complexity has historically been measured on code since the 
mathematical structure is more visible in code.
2.    The problem complexity (also known as computational 
complexity) quantifies the intricacy of the underlying 
problem. When the problem is defined at the requirements 
phase, this kind of complexity can be found. If the problem 
can be explained by using algorithms and functions, it is also 
feasible to compare many problems with one another and 
determine which is the most complex.
3.  The algorithm’s implementation software’s structure 
is measured by structural complexity. Researchers and 
practitioners have long acknowledged that there might be a 
connection between a product’s quality and its structure. To 
put it another way, the structure of specifications, the design, 
and source code may help us understand the difficulties 
we sometimes encounter when testing a product such as 
validating requirements or code testing, converting one 
product to another (e.g., implementing a design as a source 
code), or forecasting external software attributes from early 
product measures.
4.   Cognitive complexity measures the amount of work 
required to understand the software. It has to do with 
how a system is seen psychologically or how tough it is to 
implement or finish. However, as psychological researchers 
and scientists are particularly interested in investigating this 
element of complexity, we are not including it in our paper. 
But it’s important to understand that the way people think is 
a constraint on the creation of software and that it influences 
the program’s attributes that we want to evaluate, including 
quality and productivity.
Structural		  Algorithmic
Complexity		  complexity

Fig.1 Simplified model of complexity
Source: Author’s own

Component’s Complexity
Many scholars have defined software complexity differently 
in the literature. According to IEEE, software complexity is 
“the degree to which a system or component has a design 
or implementation that is difficult to understand and verify.” 
Complexity is quantified through the lens of the processing 
duration and storage required to finish a computation when 
a computer operates as an interacting system. Numerous 
researchers have occasionally put forth different measures 
for assessing, forecasting, and managing software complexity. 
Since 1976, the software complexity of structured systems 
has been measured using traditional software metrics. 
Halstead’s software science metrics, 	 SLOC, McCabe’s 
cyclomatic number, FPA, errors or faults per line of code, 
and Kafura & Henry’s fan-in, fan-out, and code coverage 
are the most well-known early reported complexity metrics 
for the traditional function-oriented approach. Bill Curtis 
distinguishes between mathematical and psychological 
software complexity. Programmers’ attempts to comprehend 
or modify a class or module are influenced by psychological 
complexity, whereas algorithmic or computational complexity 
characterizes an algorithm’s run-time performance. Software 
complexity cannot be determined using just one parameter 
of a program, component, or piece of software since it is 
a complicated property of software. The primary factors 
that increase the complexity of a (CBSS) component-based 
software system are as follows:
Size of each component: The size of a program, class, or 
component also affects its complexity.
Since a class with more methods is harder to understand 
than one with fewer, it adds additional complexity. Large 
programs or components have issues simply because of the 
amount of information needed to comprehend them and the 
additional resources required for their upkeep. Therefore, 
one aspect that increases a component’s complexity is its size. 
Interfaces of each component: A component in CBSD has 
interfaces with other components because it is related to them. 
If there is a link between two or more components—that is, 
when one component sends a message and other aspects 
receive it—they are said to be interfaced. Which component 
depends on the other or seeks services is indicated by the 
link’s direction. Incoming and outgoing interactions can be 
used as an interface between two components. A component-
based software system is made more complex by these two 
kinds of interactions. 
Interfaces are a component’s access points that enable 
an aspect to reach out for a service that is specified in the 
service provider’s interface. The mathematical definition 
of I (Component) is the entire complexity of the interface 
methods in the class. The complexity of interface approaches 
is based on their nature. The interface methods’ nature is 
defined by their arguments and return types. Arguments and 
return types can be any of the three previously discussed data 
types: primitive, structured and user-defined—that were 
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previously covered can be used in arguments and return 
types. By taking into account the overall number of methods 
in each category, these methods can be given weight values. 
The value assigned will likewise rise if there are more methods 
than the weight. It is now possible to mathematically express 
the Interface Factor, or I (Component), as follows:
 I (Componentx) =

The above algorithm represents that- m1, m2, and m3 stand 
for the total number of interaction techniques that are simple, 
medium, and complex, respectively.
An interface complexity metric for a component-based 
system that solely considers interface complexity is proposed 
as follows:

AIIC =    
(AIIC - Average Incoming Interactions Complexity)

AOIC =  
(AOIC - Average Outgoing Interactions Complexity)
Average Interface Complexity of a Component Based System 
(CBSS)=(AIC(CBS)) =       

Therefore, ‘M’ is the Component-based System’s (CBS) 
component count. 
Incoming Interactions is represented by ‘II’.
Outing Interactions is what ‘OI’ stands for.
‘I’ is an acronym for index variable.

Conclusion 
In order to describe and assess dependence connections 
between components in CBSS- Component-Based Software 
Systems, a comprehensive set of metrics was developed 
in this work. The proposed metrics enable designers to 
identify critical components that are more prone to errors 
and assess the impact of changes across the entire system. 
By quantifying component dependencies, the approach 
supports informed decision-making regarding corrective 
modifications and helps improve overall design quality, 
maintainability, and reliability. The use of a linked list–
based approach, along with the concept of a component 
dependency life cycle, provides a structured and systematic 
way to represent, understand, and manage inter-component 
dependencies. This method offers a clear visualization of 
dependency propagation and facilitates better control over 
component interactions during system evolution. Given the 
inherent complexity of large-scale CBSS, manual calculation 
of dependencies across multiple levels is neither efficient nor 
practical. Therefore, the need for an automated tool becomes 
essential to accurately compute dependency metrics at all 
levels and support real-time design evaluation. Automation 

not only improves accuracy but also enhances scalability and 
usability for practitioners. 

Implications of the Study
For Component-Based Software Systems (CBSS), this work 
has significant theoretical, practical, and methodological 
ramifications. By highlighting component dependency and 
interface-level interactions as crucial factors influencing 
system quality, it theoretically advances software complexity 
research by going beyond conventional code-centric 
complexity metrics. In order to improve maintainability and 
overall software quality, software designers and architects 
can use the suggested dependency metrics to identify crucial 
and error-prone components, evaluate the impact of changes, 
and prioritize components that need to be redesigned or 
refactored. Effective dependency control during system 
evolution is supported by the linked list-based dependency 
modelling approach, which offers a manageable and 
transparent depiction of dependent connections. In terms 
of methodology, the study provides a common framework 
for quantifying component dependencies, making it easier 
to compare CBSS designs objectively and promoting the 
creation of automated tools for scale dependency analysis. 

Future Research Direction
Future research can focus on developing a fully automated 
dependency analysis tool integrated with modern 
development environments. Further extensions may 
include empirical validation of the proposed metrics on 
large industrial systems, incorporation of dynamic runtime 
dependencies, and the application of machine learning 
techniques to predict fault-prone components. Additionally, 
exploring the interaction between dependency metrics and 
software quality traits such as versatility, maintainability, and 
efficiency further strengthen the practical relevance of this 
work.
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