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ABSTRACT

Rabies continues to be a major hazard to public health around the world,
especially in developing countries. This article proposes an equation that describes the
mechanics of animal-to-animal transmission of rabies, accounting for vaccination and
infected immigrants as potential preventative strategies. The effective reproduction
number (R0) was computed using the next-generation matrix (NGM) Method. The
Routh–Hurwitz Criterion was utilized to identify the disease-free equilibrium point
(DFE). It was shown to be unstable in all other cases and to exhibit local asymptotic
stability if (R0 < 1). It was also found that DFE is globally asymptotically stable and
quadratic Lyapunov stable. Furthermore, the normalized forward sensitivity index
approach and the central manifold theory for the bifurcation analysis were used to
examine the model parameters’ sensitivity on the (R0). The simulation analysis’s
numerical analysis comparison of RK-4 and the NSFD Method was performed using
MATLAB software. A greater vaccination rate and fewer infected immigrants would
delay the decline’s progress, according to the simulated data’s conclusions, which
were visually shown.

1. INTRODUCTION

The fatal zoonotic virus that causes rabies is mostly spread to humans and other animals through the bites or scratches
of infected animals like skunks, dogs, foxes, raccoons, and bats. The virus, found mainly in the saliva of these animals,
enters the bloodstream and travels via the peripheral nerve system to the brain, or through neuromuscular junctions after
replicating in the muscles. Upon reaching the brain, Rabies causes acute inflammation, leading to coma and, ultimately,
death. The disease has the highest case fatality rate of any infectious disease, approaching 100% once clinical symptoms
appear [1, 2].
The primary human source of rabies is dogs, responsible for the vast majority of cases worldwide. Transmission occurs
through bites, scratches, or contact with saliva on mucosal surfaces like the eyes, nose, or mouth. While Rabies can also be
transmitted through organ transplants or aerosol exposure, such instances are exceedingly rare. Early symptoms of Rabies
mimic those of the flu, including fever, pain at the site of the bite, and unusual sensations. As the central nervous system
becomes infected, it leads to severe brain inflammation, causing hyperactivity, paralysis, and death [3].
Following a bite, the location and intensity of the bite, the quantity of virus delivered, and the promptness of post-exposure
prophylaxis (PEP) all affect the chance of contracting rabies. The likelihood of contracting rabies following a bite in the
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absence of PEP to the head is about 55%, while bites to the limbs carry a lower risk. Rabies transmission through rodents is
very uncommon, and Transmission from person to person is quite uncommon with only a few documented cases occurring
through tissue and organ transplants [4].

The incubation period for Rabies in humans typically ranges from 1 to 3 months but can vary from as short as 7 days to
over a year, depending on the bite’s location and intensity, the quantity of virus injected, and additional host variables. In
comparison to bites on the extremities, bites on the face, neck, and hands have a higher risk and a shorter incubation period
because they are closer to the brain. The incubation time in dogs is about 3 to 8 weeks but can extend up to 6 months in rare
cases. Despite the high fatality rate, a few cases of human survival have been documented, mostly involving post-exposure
vaccination or specialized treatment protocols like the Milwaukee protocol. However, survival has been more common in
cases involving bat strains of the virus, whereas canine strains are generally more virulent [5].

Rabies remains a significant public health concern, particularly in Africa and Asia, where the majority of cases occur,
especially in children under 15. In these regions, dog-mediated transmission is to blame for up to 99% of occurrences
of rabies in humans. Poverty, lack of awareness, and inadequate healthcare infrastructure contribute to the high mortality
rates in these areas. However, Rabies elimination is possible with widespread dog vaccination initiatives, which have
proven effective in reducing transmission in various settings worldwide [5, 6].

Mass vaccination of dogs is the primary strategy for controlling Rabies, effectively interrupting transmission between
canines and lowering the danger to people. The chance of contracting rabies from other sources, such as wildlife, is
increasing as the prevalence of rabies caused by dogs decreases. Wild carnivores and bats are significant reservoirs for the
virus, posing a higher risk for transmission [7].

Various mathematical models have been developed to study Rabies transmission dynamics and evaluate control strategies.
These models have shown that vaccination is the most effective method for controlling the disease, while culling is less
effective. Some models also consider the impact of time delays between infection and infectiousness, demonstrating that
such delays can significantly affect the mechanics of the spread of rabies and the effectiveness of control measures [8].

In summary, Rabies is a nearly universally fatal disease with significant public health implications, particularly in regions
with inadequate vaccination coverage and healthcare infrastructure. Mass vaccination campaigns targeting dogs are crucial
for controlling and ultimately eliminating the disease, with mathematical models providing valuable insights into the most
effective strategies for Rabies control [9].

2. MODEL FORMULATION



S h
dt = Ah + α2Vh − (α1 + µh + βdhIh)S h,
Eh
dt = βdhS hIh − (αh + δh + µh)Eh,
Ih
dt = αhEh − (µh + mh)Ih,
Vh
dt = α1S h − (α2 + µh)Vh,
Rh
dt = δhEh − µhRh,
S d
dt = Bd + ρdVd − (cd + µd + βddId)S d,
Id
dt = βddS dId − (µd + md)Id,
Vd
dt = cdS d − (µd + ρd)Vd,

(1)

Graphically it can be seen in Fig. 1, while the Initial conditions are given below:
S h(0) > 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Vh(0) ≥ 0, Rh(0) ≥ 0, S d(0) ≥ 0, Id(0) ≥ 0.Vd(0) ≥ 0,
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Fig. 1. Flow-chart of the proposed Model

Parameters Humans Dogs

Recruitment Rate Ah: The recruitment rate of susceptible
humans (e.g., birth rate or immigration).

Bd: The recruitment rate of susceptible
dogs (e.g., dog birth rate).

Vaccination Rate α1: The rate at which susceptible humans
are vaccinated.

cd: The rate at which susceptible dogs are
vaccinated or treated.

Immunity Loss Rate α2: The rate at which vaccinated humans
lose immunity and become susceptible
again.

ρd: The rate at which vaccinated dogs lose
immunity and become susceptible again.

Transmission Rate βdh: The transmission rate of the disease
from the vector (e.g., mosquitoes) to
humans.

-

Natural Death Rate µh: The natural death rate of humans. µd: The natural death rate of dogs.

Infectious Progression δh: The rate at which exposed humans
become infectious.

-

Disease-Induced Mor-
tality

mh: The disease-induced mortality rate in
humans.

md: The disease-induced mortality rate in
dogs.

Infectious Progression
Rate

αh: The rate at which exposed humans
become infectious.

-

Vector Transmission
Rate

βdd: The transmission rate of the disease
from infected vectors to susceptible vec-
tors.

-

TABLE I. Parameters for Humans and Dogs

3. MODEL ANALYSIS

We shall study model system (1) in the following biologically viable area. Model system (1) is essentially split into two
areas, such Ω = Ωh ×Ωd, [10]

Lemma 1. the solution set {S h, Eh, IhVh,Rh, S d, Id,Vd} ∈ R8
+ of Model system (1), is contained in the feasible region Ω,

Proof. Suppose {S h, Eh, IhVh,Rh, S d, Id,Vd} ∈ R8
+ for every t > 0. In order to examine the dynamics of model system (1),

we aim to demonstrate that the area Ω is positively invariant.

Nh(t) = S h(t) + Eh(t) + Ih(t) + Vh(t) + Rh(t), (2)
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Nh(t) = S d(t) + Id(t) + Vd(t), (3)

where Nd(t) represents the total dog population at any given moment. Nh and (t) represent the entire human population at
any given period. (t) Formula (2) gives

Nh(t)
dt
= Ah − (µhS h + µhEh + µhIh + µhR) − mhIh (4)

Nh(t)
dt
= Ah − (Nh(t) − mhIh (5)

Similarly 3 gives
Nd(t)

dt
= Bd − (µdS d + +µdId + µdV) − mdId (6)

Nd(t)
dt
= Bd − (Nd(t) − mhId (7)

Now, assuming that the dogs’ compartment is free of disease-induced mortality rates and culling effects, it follows that 6
and 7 become

Nh(t)
dt
= Ah − mhN − h (8)

Nd(t)
dt
= Bd − md(Nd(t), (9)

Suppose Nh(t)
dt ≥ 0, Nd(t)

dt ≥ 0,Nh ≥
Ah
mh

and Nd ≥
Bd
md
≥

Bd
md

, and after that using the theorem put forth in[32] on differential
inequality results in 0 ≥ Nh ≥

Ah
mh

and 0 ≥ Nd ≥
Nd
md

8 and 9

Nh(t)
dt
≥ Ah − mhN − h (10)

Nd(t)
dt
≥ Bd − md(Nd(t), (11)

Solve 10 and 11 using the IF (integrating factor) approach. Hence, I.F = e
∫

p(t)dt and dy
dt + p(t)y = Q. The region is the

possible solution for the dogs population in model system (1) after some algebraic modification.

Ωd = {(S d, Id,Vd) ∈ R3
+,Nd ≥

Bd

md
} (12)

In a similar manner, the human population does as well. According to 11, this suggests that the human population of
model system (1) may be solved in the area

Ωh = {(S h, Eh, Ih,Vh,Rh) ∈ R5
+,Nh ≥

Ah

md
} (13)

Therefore, Ω contains the workable solutions. Ω = Ωh ×Ωd, as a result, It follows from the common comparison theorem
on differential inequality

Nh ≥ Nh(0)e−(mh)t +
Ah

mh

(
1 − e−(mh)t

)
(14)

Nd ≥ Nd(0)e−(md)t +
Bd

md

(
1 − e−(md)t

)
(15)

Hence, the total dog population size Nd(t) as t → ∞ approaches Dd
md

. Similarly, as t → ∞, the size of the human
population as a whole Nh(t) approaches Ah

mh
. This means that as time approaches infinity, the infected state variables
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(S h, Eh, Ih, and Vh) of the two populations trend to zero. Consequently, all of the solutions in R8
+ are being drawn to or

attracted by the area Ω, which results in the set of workable solutions for model system (1) as described in [10].



S h

Eh

Ih

Vh

Rh

S d

Id

Vd


∈ R8

+|



S h ≥ 0
Eh ≥ 0
Ih ≥ 0
Vh ≥ 0
Rh ≥ 0
S d ≥ 0
Id ≥ 0
Vd ≥ 0

Nh ≥
Ah
mh

Nd ≥
Bd
md



(16)

Hence, (1) is mathematically well-posed and epidemiologically meaningful.

4. BASIC QUALITATIVE PROPERTIES OF THE MODEL(1)
The rabies Model is significant both mathematically and physiologically if and only if each state variable in the model is
non-negative bounded in the invariant zone.

Ω = {(S h, Eh, Ih,Vh,Rh, ) ∈ R5
+, Nh ≥

(
(α2 + µh)Ah

(α1α2 − (α2 + µh))

)
S d, Id,Vd ∈ R3

+, Nd ≥

(
α1(α2 + µh)Ah

(α1α2 − (α2 + µh))(α2 + µh)

)
}

(17)

Theorem 4.1. (Positivity of the model solutions) Let us give the initial data in equation (condition no) then the solution
S h(t), Eh(t), Ih(t),Vh(t),
Rh(t), S d(t), Id(t),Vd(t) of the Model (1), are non-negative for all time t > 0, [11]

Proof. Let us consider S h(0) > 0, Eh(0) > 0, Ih(0) > 0,Vh(0) > 0,Rh(0) > 0, S d(0) > 0, Id(0) > 0,Vd(0) > 0 then for all
time t > 0, we have to show that S h(0) > 0, Eh(0) > 0, Ih(0) > 0,Vh(0) > 0,Rh(0) > 0, S d(0) > 0, Id(0) > 0,Vd(0) > 0.
Define Π = S up{S h(0) > 0, Eh(0) > 0, Ih(0) > 0,Vh(0) > 0,Rh(0) > 0, S d(0) > 0, Id(0) > 0,Vd(0) > 0}. We may now
argue thatΠ > 0, ifΠ = +∞, then non-negativity exists given that every state variable in the rabies model (1) is continuous
and positive. However, if 0 < Π < +∞, then S (Π) = 0, S h(Π) > 0, Eh(Π) > 0, Ih(Π) > 0,Vh(Π) > 0,Rh(Π) > 0, S d(Π) >
0, Id(Π) > 0,Vd(Π) > 0 from the first equation of the model (1) we get

S (Π) = M1S (0) + M1

∫ Π

0
exp

∫ Π
0 (α2+µh+βdh)dt (Ah + α2) dt > 0,

where
M1 = exp−(µht+

∫ Π
0 α2+βdh)>0, S (0) > 0.

and from the meaning ofΠ the solution S h(t) > 0, Eh(t) > 0, Ih(t) > 0,Vh(t) > 0,Rh(t) > 0, S d(t) > 0,2, Vd(t) > 0, Id(t) > 0
Moreover, since the exponential function is always positive, S (Π) , 0. hence the solution S (Π) > 0. Thus, all of model
(1)’s solutions are non-negative after applying the same process for Π = +∞.

5. DISEASE FREE EQUILIBRIUM POINT (DFE)
This can only be accomplished if there is no RABV infection in the population, which implies that there are no humans
who have been treated, recovered, or infected by diseased dogs—that is, (E0

h = I0
h = R0

h = I0
d = 0). After model equations

(1) are found, the RABV free equilibrium is provided by (F0)

F0 = (S 0
h, E

0
h, I

0
h ,V

0
h ,R

0
h, S

0
d, I

0
d ,V

0
d , ) (18)

F0 =

(
(α2 + µh)Ah

α2αh + (α2 + µh)2 , 0, 0,
(α2 + µh)2Ah − Ah(αhα2 + (α2 + µh)2)

αh(α2αh + (α2 + µh)2)
, 0,

(µd + ρd)Bd

(µd + ρd)(cd + µd)
, 0,

cd(µd + ρd)Bd

(µd + ρd)2(cd + µd)

)
(19)
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6. BASIC REPRODUCTIVE NUMBER R0

The Basic Reproductive Number in epidemiology, or R0, is a crucial idea, used to measure the transmission potential
of an infectious condition. It displays the average number of secondary infections that an infected individual within a
susceptible group produces. In other words, it quantifies the ability of a disease to spread within a population. If R0 > 1,
each existing infection is causing more than one new infection, indicating that the disease is likely to spread within the
population. If R0 < 1, each existing infection is causing less than one new infection, suggesting that the disease will likely
die out in the population over time. Now we use the NGM Method to the R0 as follow [1, 9]

Eh
dt = βdhS hIh − (αh + δh + µh)Eh,
Ih
dt = αhEh − (µh + mh)Ih,
Id
dt = βddS dId − (µd + md)Id,

(20)

F =

βdhS hId

0
βddS dId

 , F∗ =

0 0 βdhS 0
h

0 0 0
0 0 βddS 0

d

 ,
V =

 (αh + δh + µh)Eh

(µh + mh)Ih − αhEh

(µd + md)Id


V∗ =

(αh + δh + µh) 0 0
−αh (µh + mh) 0

0 (µd + md)


V−1 =


1

αh+δh+µh
0 0

αhmd+eh+ehαhµd
(md+µd)(md+µd)(αh+δh+µh)

1
md+µd

0
0 0 1

md+µd


F∗V−1 =


0 0 βdhS 0

h
md+µd

0 0 0
0 0 βddS 0

(md+µd)


R0 =

βdd

(md + µd)

(
cd(µd + ρd)Bd

(µd + ρd)2(cd + µd)

)
(21)

7. LOCAL STABILITY OF DISEASE FREE EQUILIBRIUM POINT

Theorem 7.1. In set B, at the disease-free equilibrium F0, the suggested system (1) is considered local asymptotically
stable (LAS) if R0 < 1, and unstable if R0 > 1[10].

Proof.

JE0 =



−(α1 + µh) 0 0 α2 0 0 βdhS ∗h 0
0 −c1 0 0 0 0 βdhS ∗h 0
0 αh −c2 0 0 0 0 0
α1 0 0 −c3 0 0 0 0
0 δh 0 0 −µh 0 0 0
0 0 0 0 0 −(cd + µd) βddS ∗ ρd

0 0 0 0 0 0 −(µd + md) 0
0 0 0 0 0 cd 0 −(µd + ρd)


(22)

where, c1 = (αh + δh + µ), c2 = (µh + mh), c3 = (α2 + µh) λ1 = −(α1 + µh), λ2 = −(αh + δh + µh) the compounding
eigenvalue of the of the above system is given, λ1 = −(α1+µh) < 0, since α1+µh) > 0 and λ2 = −(αh+δh+µh) < 0, since
(αh + δh + µh) > 0, λ3 = −(αh + δh + µh)(µh + mh) < 0, since (αh + δh + µh)(µh + mh) > 0 λ4 = −(α1α2 − (α2 + µh)2) < 0,
since (α1α2 − (α2 + µh)2) > 0 λ5 = −µh(αh + δh + µh) < 0, since λ5 = −µh(αh + δh + µh) > 0, λ6 = −(cd + µd)cd < 0, since
(cd +µd)cd < 0, λ7 = −(µd +md) < 0, (µd +md) > 0 λ8 = −(cdρd(µd + δd)(cd +µd)) < 0, since (cdρd(µd + δd)(cd +µd)) > 0
all the eigenvalues are negative, therefore the disease is free of rabies since there are no human cases of the disease. There
is no infection in the host population, and the human population as a whole is in good health. Additionally, the F0 is
unstable if R0 > 1. R0 > 1,



20 Jehagir et al., Global Journal of Sciences, 1(1), 2024, 14–27

7.1 Global Stability of the Disease-free Equilibrium

The Castillo-Chavez et al. [11] method is used to examine the equilibrium devoid of disease’s worldwide stability.
Subsequently, the model system (1) might be stated as follows: dP

dt = F(P,Q),
dQ
dt = G(P, 0),G(P, 0) = 0.

(23)

Theorem 7.2. Where P ∈ Rm represents the disease-free equilibrium point, Q ∈ Rn, the number of infected compartments,
and the number of uninfected compartments, E0 = (P0, 0). In order to ensure the global asymptotic stability of DEF, it
is necessary to meet the conditions (H1) and (H2) below. The point of equilibrium for the disease free, E0 = (P0, 0), is
globally asymptotically stable if R0 < 1, and unstable if otherwise [12]

Proof. : The rabies model (1) can written as, p = (S h,Vh,Rh, S d,Vd), Q = (Eh, Ih, Id), and
E0 = {

(α2+µh)Ah
α2αh+(α2+µh)2 , 0, 0,

(α2+µh)2Ah−Ah(αhα2+(α2+µh)2)
αh(α2αh+)(α2+µh)2 , 0, (µd+ρd)Bd

(µd+ρd)(cd+µd) , 0,
cd(µd+ρd)Bd

(µd+ρd)2(cd+µd) }.
Now we have

dP
dt
=


Ah + α2V − (α2 + µh + βdhId)S h

α1S h − (α2 + µh)Vh

δhEh − µhRh

Bd + ρdVd − (cd + µd + βddId)S h

cdS d − (µd + ρd)

 (24)

At disease free equilibrium point we get

dP
dt
= (P0, 0) =



Ah + α2
(α2+µh)2Ah−Ah(αhα2+(α2+µh)2)

αh(α2αh+)(α2+µh)2 − (α2 + µh + βdhId) (α2+µh)Ah
α2αh+(α2+µh)2

α1
(α2+µh)Ah

α2αh+(α2+µh)2 − (α2 + µh)Ah + α2
(α2+µh)2Ah−Ah(αhα2+(α2+µh)2)

αh(α2αh+)(α2+µh)2

0
Bd + ρdAh + α2

(α2+µh)2Ah−Ah(αhα2+(α2+µh)2)
αh(α2αh+)(α2+µh)2 − (cd + µd + βddId) (α2+µh)Ah

α2αh+(α2+µh)2

cd
(α2+µh)Ah

α2αh+(α2+µh)2 − (µd + ρd)


(25)

F(P0, 0) has a unique equilibrium point[
(α2+µh)Ah

α2αh+(α2+µh)2 ,
(α2+µh)2Ah−Ah(αhα2+(α2+µh)2)

αh(α2αh+)(α2+µh)2 , (µd+ρd)Bd
(µd+ρd)(cd+µd) ,

cd(µd+ρd)Bd
(µd+ρd)2(cd+µd)

]
. This is globally asymptotically stable; hence, the sec-

ond condition’s condition (H1), holds.(H2),

G(P,Q) =

βdhS hId − (αh + δh + µh)Eh

αhEh − (µh + mh)Ih

βddS dId − (µd + md)

 (26)

Then we get

X = A1(P0, 0) =

−(αh + δh + µh) 0βdhS 0
h

αh −(µh + mh) 0
0 0 βddS 0

d

 (27)

Now that the off-diagonal elements of the matrix X are non-negative, it is evident that the matrix is a matrix. G−(P,Q) =
XA −G(P,Q) equals to

G−(P,Q) =

−(αh + δh + µh) 0 βdhS 0
h

αh −(µh + mh) 0
0 0 βddS 0

d


Eh

Ih

Id


βdhS hId − (αh + δh + µh)Eh

αhEh − (µh + mh)Ih

βddS dId − (µd + md)

 (28)

G−(P,Q) =

βdhS 0
h − (αh + δh + µh)

0
βddS 0

d − (µd + md)V0
d

 (29)

. Since it clear that S 0
h > S h and V0

h > Vh, and S 0
d > S d, and V0

d > Vd, Consequently, it is evident that G−(P,Q) ≥ 0, and
P0 = (S 0

h,V
0
h , S

0
d.V

0
d ) is globally asymptotically stable,
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8. ENDEMIC EQUILIBRIUM POINT
A second equilibrium solution derived by solving the system of algebraic equations represents the case where I , 0. This
approach is known as the "endemic equilibrium solution" and looks like this:[9]

S ∗h =
Ah+α2V∗

(α2+µh+βdhI∗d ) ,

E∗h =
βdhS ∗hI∗d

(αh+δh+µh) ,

I∗H =
αhEh

(µh+mh)I∗h
,

V∗h =
α1S ∗h

(α2+µh) ,

R∗h =
δhE∗h
µhR∗h
,

S ∗d =
Bd+ρdV∗d

(cd+µd+βdd I∗d ) ,

I∗d =
βddS ∗d I∗d
(µd+md) ,

V∗d =
cdS ∗d

(µd+ρd) ,

(30)

8.1 Global Stability of the Endemic Equilibrium Point

The global stability of the endemic equilibrium point B0 was established using the Lyapunov function developed by
Vargas-De-León [13], and it was further studied. The Lyapunov function V(x) is said to be asymptotically globally stable
at the point where it occurs if dV

dt < 0.

Theorem 8.1. The rabies epidemic in the Model System has a unique endemic equilibrium point B∗, which is unstable
otherwise and globally asymptotically stable if R0 > 1.[14]

Proof. Examining the quadratic Lyapunov function by itself

V(y1, y2, y3, ..., yn) =
n∑

i=1

1
2

[
yi − y∗i

]2 ,

where y∗ is the endemic equilibrium point and yi is the population of the ith compartment. The following is a positive
definite function for the model system 1.

V(S h, Eh, Ih, Vh, Rh, S d, Id, Vd) =
n∑

i=1

1
2

[
yi − y∗i

]2 , (31)

The rabies model system’s Lyapunov function is thus expressed as follows:

V =
1
2

[(S h − S ∗h) + (Eh − E∗h) + (Ih − I∗h) + (Vh − V∗h ) + (Rh − R∗h) + (S d − S ∗d) + (I − I∗d) + (V − V∗d )]2, (32)

Clearly V : R8
+ → R is a differentiable, continuous function. Next, the function V(t) can be differentiated with respect to

time to obtain:
dV
dt = [(S h − S ∗h) + (Eh − E∗h) + (Ih − I∗h) + (Vh − V∗h ) + (Rh − R∗h) + (S d − S ∗d) + (I − I∗d) + (V − V∗d )]
d
dt (S h + Eh + Ih + Vh + Rh + S d + Id + Vd)

⇒
dN
dt

(S h + Eh + Ih + Vh + Rh + S d + Id + Vd) = Ah − µh(Nh(t)) − mhIh − Nd(t) − mdId + Bd−

(S ∗h + E∗h + I∗h + V∗h + R∗h) =
Ah + mh

µh
, (S ∗d + I∗d + V∗d ) =

Bd − µd

µd
, (33)

dVh

dt
=

[
Nh(t) −

Ah − mhI∗h
µh

] [
Nh(t) −

Ah − mhI∗h
µh

]
(34)

dVh

dt
= −

[
Nh(t) −

Ah − mhI∗h
µh

]2

(35)

dVd

dt
= −

[
Nd(t) −

Bd − mdI∗d
µd

]2

(36)

Since dVh,d
dt < 0 is evident, it follows that B0, the Endemic Equilibrium Point, is asymptotically stable worldwide.
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9. NUMERICAL SIMULATION
This section’s numerical simulation was carried out with the aid of MATLAB2016a software and the ODE solver that
combines the applications of Runge-Kutta (RK4) and RK5, fourth and fifth order algorithms. When it comes to modeling
the dynamics of the rabies transmission model, it has proven to be quite accurate. The beginning circumstances are
assumed to be random in sequence to produce a certain model behavior. The population dynamics of the rabies population
are shown in Fig. 2. The results demonstrate that throughout the early years, the proportion of sensitive animals rapidly
decreased. The illness contracted by interacting with diseased animals and the decline in vulnerable animals are the main
causes of this decline. Animals that are sensitive are less susceptible to contracting the virus when they come into contact
with infected individuals.

Fig. 2. Population dynamics of the rabies population

Regarding small βdh values (such as βdh = 0.1): Slow population decline in the susceptible group suggests a decreased
rate of transmission. The number of vulnerable individuals gradually decreases as a result of the disease’s less effective
spread. For large levels of βdh (such as βdh = 0.5), This suggests a faster rate of transmission. The item As a result,
the illness spreads more quickly. As more people become exposed and sick, the number of susceptibles rapidly declines.
The dynamics of disease propagation may be understood by examining the impact of various βdhvalues on the exposed
population (E). This analysis reveals that the transmission rate is quite significant. Higher βdh values produce a quick
increase in the number of exposed persons, resulting in a faster and more extensive epidemic, whereas lower βdh βdd and
values cause the illness to spread more slowly. This emphasizes how crucial it is to use treatments meant to lower the rate
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of transmission in order to manage and lessen the effects of infectious illnesses. These results underscore the importance
of interventions aimed at reducing the transmission rate βdh to control and mitigate the impact of infectious diseases in
Figures 4 and 3, Measures such as vaccination, social distancing, wearing masks, and improving hygiene can effectively
lower βdh thereby reducing the spread of the disease. By maintaining a lower βdh, it is possible to prevent a rapid and
overwhelming outbreak, allowing for better management of healthcare resources and minimizing the overall impact on
the population.

Fig. 3. Comparison of model dynamics for vaccinated and non-vaccinated populations

Effect of Vaccination: The vaccination procedure results in a notable decrease in the vulnerable population, according to
the vaccination scenario see Fig. 3, and see Fig. 4, fewer people are vulnerable and because vaccinations are administered
directly to individuals, the exposed and infected populations are often smaller in vaccination scenarios. In the vaccination
scenario, there is a higher percentage of recovered persons, suggesting that vaccination contributes to a greater number of
recovery cases. The vaccinated compartment, which is exclusive to the vaccination scenario, illustrates how vaccination
might lower the populations of exposed and infected individuals. These findings demonstrate the value of vaccination in
halting the spread of infectious illnesses by lowering the proportion of vulnerable and contagious people, which eventually
results in fewer cases and a speedier rate of population recovery. For example, α1 = 0.13 and α2 = 0.15 are the values
of the parameters α1 and α2 that correspond to the vaccination scenario. These metrics stand for vaccination rates among
the vulnerable population and vaccine efficiency, respectively. Both α1 and α2 are 0 in the case of no immunization. This
indicates that there is no vaccination and that the system operates as though there are no vaccination effects.

10. NUMERICAL ANALYSIS

The numerical interpretation of model (1) using RK4 and the Matlab-coded NSFD approach is the main topic of this
section. As table 1 shows, a variety of parameters together with their respective numerical values have been collected
from [2, 4]. Initially, we create the two epidemic model numerical approaches. Next, using the graphs, we can monitor the
dynamic behavior of MODEL (1) over time t by numerical simulations. We also talk about the numerical outcomes.
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10.1 RK4 Scheme

In order to formulate an explicit numerical scheme for the RK4 approach [15-18], the following presumptions must be
made. S h(t) ≈ S n

h, Eh(t) ≈ En
h, Ih(t) ≈ In

h ,Vh(t) ≈ Vn
h ,Rh(t) ≈ Rn

h, S d(t) ≈ S n
d, Id(t) ≈ In

d ,Vd(t) ≈ Vn
d

k1 = h
[
Ah + α2Vn

h − (α1 + µh + βdhIn
d )S n

h

]
,

w1 = h
[
βdhS n

hIn
d − (αh + δh + µh)En

h

]
,

m1 = h
[
α1S n

h − (α2 + µh)Vn
h ,

]
,

n1 = h
[
δhEn

h − µhRn
h,

]
,

o1 = h
[
Bd + ρdVn

d − (cd + µd + βddIn
d )S n

d

]
,

p1 = h
[
βddS n

dIn
d − (µd + md)In

d ,
]
,

q1 = h
[
βddS n

dIn
d − (µd + md)In

d

]
,

v1 = h
[
cdS n

d − (µd + ρd)Vn
d

]
,

k2 = h
[
Ah + α2

(
Vn

h
n1

2

)
−

(
α1 + µh + βdh

(
In
d +

q1

2

)
(S n

h +
k1

2
)
)]
,

w2 = h
[
βdh

(
S n

h +
k1

2

) (
In
d +

q1

2

)
− (αh + δh + µh)

(
En

h +
w1

2

)]
,

m2 = h
[
α1

(
S n

h +
k1

2

)
− (α2 + µh)

(
Vn

h +
n1

2

)]
,

n2 = h
[
α1

(
S n

h +
k1

2

)
− (α2 + µh)

(
Vn

h +
n1

2

)]
o2 = h

[
δh

(
En

h +
w1

2

)
− µh

(
Rn

h +
o1

2

)]
,

p2 = h
[
Bd + ρd

(
Vn

d +
n1

2

)
− (cd + µd + βdd

(
In
d +

q1

2
)S n

d +
p1

2

)]
,

q2 = h
[
βdd

(
(S n

d +
p1

2
)(In

d +
q1

2
)
)
− (µd + md)In

d ,
]
,

v2 = h
[
cd

(
S n

d +
p1

2

)
− (µd + ρd)

(
Vn

d +
v1

2

)]
,

Hence

S n+1
h = S n

h +
1

16
[k1 + 2k2 + 2k3 + 2k4 + 2k4 + 2k5 + 2k6 + k7 + k8] (37)

En+1
h = En

h +
1

16
[w1 + 2w2 + 2w3 + 2w4 + 2w4 + 2w5 + 2w6 + 2w7 + w8] (38)

In+1
h = In

h +
1
16

[m1 + 2m2 + 2m3 + 2m4 + 2m4 + 2m5 + 2m6 + 2m7 + m8] (39)

Vn+1
h = In

h +
1

16
[n1 + 2n2 + 2n3 + 2n4 + 2n4 + 2n5 + 2n6 + 2n7 + n8] (40)

Rn+1
h = Rn

h +
1
16

[o1 + 2o2 + 2o3 + 2o4 + 2o4 + 2o5 + 2o6 + 2o7 + o8] (41)

S n+1
d = En

d +
1

16
[
p1 + 2p2 + 2p3 + 2p4 + 2p4 + 2p5 + 2p6 + 2p7 + p8

]
(42)

In+1
d = In

d +
1

16
[
q1 + 2q2 + 2q3 + 2q4 + 2q4 + 2q5 + 2q6 + 2q7 + q8

]
(43)

Vn+1
d = Vn

d +
1
16

[
j1 + 2 j2 + 2 j3 + 2 j4 + 2 j4 + 2 j5 + 2 j6 + 2 j7 + j8

]
(44)
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10.2 NSFD schemne

We introduce a trustworthy numerical method in this subsection, which is based on the Mickens created the non-standard
finite difference (NSFD) methodology [19]. This methodology finds several uses in the examination of numerous real-
world, practical issues that crop up in the engineering and mathematics disciplines. We refer to [20, 21] for NSFD
technique applications in various applied mathematics domains. In order to provide the following in model (1) based
on the first equation in order to create an explicit numerical scheme for the NSFD method.

S h

dt
=

S n+1
h − S h

h
, S h(t) ≈ S n+1

h , Ih(t)S h(t) = In
hS n+1

h

from the 2nd equation of the model (1),

Eh

dt
=

En+1
h − Eh

h
, Eh(t) ≈ En+1

h , Ih(t)S h(t) = In
hS n+1

h

from the 3rd equation of the model (1),
Ih

dt
=

In+1
h − Ih

h
, Ih(t) ≈ In+1

h ,

from the 4th equation of the model (1), let

Vh

dt
=

Vn+1
h − Vh

h
,Vh(t) ≈ Vn+1

h , Eh(t) = En
h

from the 5th equation of the model (1), let

Rh

dt
=

Rn+1
h − Rh

h
,Rh(t) ≈ Rn+1

h ,

from the 6Th equation of the model (1),

S d

dt
=

S n+1
d − S d

h
, S d(t) ≈ S n+1

d , Id(t)S d(t) = In
dS n+1

d

from the 7Th equation of the model (1),

Id

dt
=

In+1
d − Id

h
, Id(t) ≈ En+1

d , Ed(t) = En
d

from the 8Th equation of the model (1), let

Vd

dt
=

Vn+1
d − Vd

h
,Vh(t) ≈ Vn+1

d ,

using the above assumption the eight equation of the model (1), become, Thus,

S n+1
h =

S n
h + h(Ah + α2Vn

h )
1 + h(α2 + µh + βdhIn

d
(45)

En+1
h =

En
h + h(βdhIn

hS n
h)

(1 + h(αh + δh + µh)
(46)

In+1
h =

In
h + h(µh + mh

(1 + h(α2 + µh)
(47)

Vn+1
h =

Vn
h + h(α1S n

h + Vn
h )

1 + (α2 + µh)
(48)

Rn+1
h =

Rn
h + δhEn

h

1 + h(µh)
, (49)

S n+1
d =

S n
d + h(S dβd + ρdVn

d )
1 + h(cd + µd + βddIn

d )
(50)

In+1
d =

In
d + h(βddS n

d + In
d

1 + h(µd + md)
(51)

Vn+1
d =

Vn
d + h(cdS n

d + Vn
d

1 + h(µd + ρd)
(52)
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Theorem 10.1. The continuous model (1)’s equilibrium points (E0 and E1, respectively) are preserved by the discrete
scheme (29)–(35). In other words, the continuous model’s endemic equilibrium, also known as the disease-free equilibrium
point (1) are the only fixed points in scheme (29)–(35). Furthermore, the NSFD scheme’s equilibrium points and fixed
points have the same stability properties.

10.3 Numerical Results

The numerical interpretation of model (1) utilizing the Matlab-coded RK4 (21)–(28) and NSFD is presented in this section
technique (29)–(35). Initially, we compare the h = 1.0 discretization step size for the RK4 and NSFD approaches. Both
numerical methods are numerically Figs. 2-3 demonstrate that they are convergent and converge to the real steady states
(E0 and E1) of the continuous model (1), respectively. Furthermore, RK4 and NSFD offer excellent solutions for h = 1.0
in the fundamental feasible region B. Crucially, for R0 < 1, the RK4 approach produces positive solutions if we pick h =
1.5, moving away from the genuine steady state and converges to the true steady state of E0. On the other hand, for R0 > l,
it wanders away from the genuine steady state and does not converge to E1, leading to unanticipated negative solutions
that are never found inside set B. In contrast, the NSFD method yields positive solutions and converges to both E0 and E1
when R0 < 1.

Fig. 4. Comparison of population dynamics using NSFD and RK4

Although extremely large or very tiny time steps may still have an impact on accuracy and stability, the approach is
typically stable over a wide range of time steps. The code supplied selects a time step of dt = 0.01, which strikes a
compromise between computing efficiency and precision.
Susceptible Humans (S h) : A comprehensive trajectory of susceptible humans across time will be provided by the RK4
approach. Depending on the settings, you may see variations in the amount of people that are vulnerable due to things like
recovery and illness transmission rates. Other Variables: In a similar vein, the dynamics outlined by the model equations
will cause variables such as exposed individuals (Eh), infected humans (Ih),and recovered humans (Rh), to alter. Some
of the shortcomings of conventional techniques, such as RK4, are intended to be addressed by the Numerically Stable
Finite Difference (NSFD) method, particularly with regard to stability and the treatment of stiff equations. Although the
NSFD implementation’s specifications aren’t disclosed, the following is what to generally anticipate: Stability: Where
standard approaches such as Euler or RK4 may struggle, NSFD methods prove especially helpful for stiff systems. Even
with longer time periods, they can maintain stability and manage quick changes in variables more effectively. Accuracy:
Although NSFD techniques are stable, their accuracy may not always match that of RK4, particularly if the discretization
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scheme is less sophisticated. They make up for it, nonetheless, with increased stability in rigid systems. RK4 is a fantastic
choice. It’s well-established, accurate, and extensively used in numerous applications. If you have unique demands relating
to stability or other features, NSFD would be worth studying further, but it requires careful implementation.
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