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1. INTRODUCTION

One of the most practical areas of differential equations in research is BVPS. The aforesaid area has been used very
well to study various real world problems. Also various problems of physics, fluid mechanics and engineering disciplines
have been investigated by using the concept of BVPs. For some details, we refer here few references like applications
of fractional calculus in various fields in [1], applications in science and engineering [2], uses of the mentioned area
in physics [3], some diverse problems and detail utilizations, theory and importance of fractional order derivatives and
integrals in [4].

Recently the area of fractional calculus has given very high dedications from researchers. This is due to the important
applications of the mentioned area in modeling various real-world process and phenomenons. Here for the references,
we give some remarkable contribution like [5-7]. Keeping in mind the importance of the mentioned area, researchers
have studied FODEs from various aspects. The areas which have been very explored are the qualitative analysis, stability
theory, numerical and analytical approximations of FODE:s. For the aforesaid studies, authors have used various tools of
nonlinear functional analysis and methods of numerical sides. Here, we refer some work as [8-12]. An important area of
differential equations which increasingly used to model those evolution processes which sufferer from abrupt changes or
they behave variously is known as impulsive equations. The said area have crossover behaviors in nature. In real world
applications like sudden change in season, earthquake, fluctuation in economy of less developed countries, heart beat,
pendulum motions, etc are the important examples. Now to model such situation with classical differential equations is
not adequate and hence we cannot obtain well informative results about the phenomenon. Therefore, it has been found
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that modeling the aforesaid process by using impulsive equations will give accurate and well informative results. It is the
ability of impulsive equations which model the evolutions processes with crossover behaviors in nature more brilliantly.
Hence, researchers have extended the mentioned area to FODEs. Here, the use of fractional order globalize the nature of
the operator from local to nonlocal. Also, fractional order derivatives and integrals provide a complete spectrum of the
function on whom these operators work. In this regards, some important work been done like [13-15]. The area devoted
to establish the existence theory by using fixed point theory has been explored very well. Plenty of research work has
been published in this regards. In the same line, the mentioned theory have also been utilized to study various BVPs
of impulsive FODEs. Here we refer some work like [16-18]. On the other hand delay differential equations constitutes
an important class which model those process which involve delay concept. Various delay concept like proportional and
discrete type delay problems have increasingly investigated in literature. Here we refer some work on delay FODEs as
[19-21].

In the same way, BVPs with both kinds of delay concepts are very rarely studied. In this regards some problems under
impulsive criteria have been recently considered like [22-23]. Also, it is interesting to mentioned that BVPs with impulsive
conditions of FODESs have increasingly considered in literature for the existence theory. Robbin BVPs have important
applications in mathematical physics and engineering disciplines. The concerned area has very rarely considered together
with impulsive conditions. Here, we mentioned that the degree theory have been used very well in various articles. For
instance [24] author used it to deal a nonlinear integral system. Further, authors [25-27] have used it to investigate different
classes of FODEs. In the same way, authors [28] used it to study an impulsive problem of FODE:s.

Recently, authors [29] have considered a class of Robbin BVPs under impulsive FODEs. They apply topological degree
theory to establish the existence results for the given problem. Inspired from the applicability and uses of FODEs and
degree theory, here we extend the problem been studied in [29] under Robbin boundary conditions together with impulsive
behavior involving mixed delays terms as

D) = E(, R(1), N, N(t—1),,t #1;, | <a <2,

AR(L) = LN(), aR' (1) = Ji(R(®), 1

21R(0) + 2o8(1) = g1(R), 238 (0) + 24N'(1) = 2N,
where j = 1,2,...,1, 0 < @ <2 as well as the nonlinear mapping f : [0, 7]xR3> — Ris continuous and / j»Jj are anonlinear
map that establish the magnitude at the discontinuity of #;, where 0 < 1} <1y <1, <t3...,<tyand ;(R(t;)) = R(t")—=N(t,),
Ji(N' (1)) = N'(t7) = N'(17), the symbols N(r}), N™(r]), and R(#;), N™(#;) are the limits from the right and left, respectively,

and D represent Caputo derivative of Different order where 1 < @ < 2. We prove the existence and uniqueness of solution
to the proposed problems by the mentioned degree theory. We provide an example also.

2. PRELIMINARIES

Here we recollect some already defined results from (4), (5), (7).
Definition 1. Let X € L([0, f], R) be a function. Then Riemann-Liouville integral of fractional order a > 0 of function N
is given by
1 !
80 = s [ -0 d
') Jo ¢
provided that integral is pointwise defined on right side.
Definition 2. The Caputo derivative of fractional order @ > 0 of function 8 € C|[0, t] is defined by

@ _ 1 ' _ \n—a—1(n)
DN = s [(a- oI,

provided that the integral on right hand side is pointwise defined on (0, ), where n = [a]+1 and [a] denotes the integer
part of the real number «.

Lemma 1. Let a > 0, then FODE
D*N(@) =0
has the solution in the form of

N = ag + art + axt® + ... + ay "7

Lemma 2. suppose a > 0, then
DY[N(®)] = h(1)
has a solution
N = I°Th(D] + [ao + ait + aaf> + ... + ap 1.
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3. THE EXISTENCE OF SOLUTION TO THE GIVEN PROBLEM

In this section,we introduce several hypothesis for the existance and uniqueness theories of the problems being studied
and provide space PC(J,R) = ¥, a name that we required in this work.

(CA1) Suppose for 8, N, € ¥ there exist a constants wy, , w,, € [0, 1) such that
g1 — 1N < g, IR = Nal, 122(81) — 22(R2)| < wy, [Ny — Ry
(CAz) Let for N € W, we have few constants x,,, te,, Xg,> Mg, € [0, 1) such that
lgr (] < g, INI + 1, 182 < xg, IN] + gt
(CA3) Let for N € W, we have different constants Dy, Wy € [0, 1) so that
[F((, N(@®), R(A(1)), N(T = )] < Dy + Dy IN| + Dy AIN| + D 7IN].
[F((£, R(0), RA(®)), R(T = )| < Dy + WN
where Dy = Dy and Wy = Dy, + DA+ DT
(CAy4) Letfor N € R, we have some constants Dy, Wy, D>, W, € [0, 1) such that
[1;(N)] < DyIN] + Wy, |J;(R)] < DaIN| + W,
(CAs) LetI;,J; : R — R and we have few constant K, K/, € [0, L) such that
(N1 — LR < KRt = Ral, [:(R1) = Ji(R)l < K4IR1 — Ko

and
[£((2, Ry (®), Ra (D)), BT = D) = f(2, Na(2), Ro (A1), o (7 = D)),
< Lf|81 —Ny| + Lf|x1(/ll‘) — N (A1) + Lf|N1(l‘ —7) =N —7) < KxIN1 =Ny forall;,N, e Randi=1,2,3,....

A function X € ¥ with its @- derivative exist on [0, 7] —{t1, t2, f3, . . ., I, } it is considered the solution to the given fractional
impulsive problem with boundary conditions if it satisfies the equation (1) under consideration.

Lemma 3. Let N € W represent the solution to the impulsive fractional problem, where o is a function in C([0, 1], R)
defined as follows
DN =c@®),,t#t, | <a <2,

AR(t)) = [(R(@), aR (1) = J;(R(#)), j = 1,2,3,...,1 2)
AIR(0) + £o8(1) = g1(R), 238 (0) + A48 (T) = £2(N),

if and only if N is the answer of the impulsive fractional integral equation as

= ! t a-1 L k V L -l
NO = o5 [ - oo + T f =00

k k
+ (;(: 1)+ zﬁg Wi Alizm ;(T _1- Aath)
% ﬁ ]Z:: I,:(tj - " o(Q)dd
" ((Al + ij)A(g +A4) A3ti4A4)r(al_ D f:(r - O Pode 3)
" A]A-l-lAz jzl_c;lj(x(tj)) " (Z“ R ij)A(ZZ +hy) A]i—ZAz jzlj;(T — 1)
k
_ A;iatm ) ; J,(N(t,-))((AI " Af;; rwiire Jtr ™ )gz(N)

1) Ay koo .
’ A +2y (A +a)0(@) ;L_I(T_o o(de.
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Proof. Let N be the solution to (2). Then, for o € C([0,1],R) and ¢ € [0, 7], and by applying Lemma 2 to the given

problem, we obtain two constants, by and b;, such that
N() 1%0(t) — by — byt, t € [0, 1],

T
@j(; (ty = O ' ()dl — by — bit, t €[0,1].

N(1)

After differentiating, we have

' _ 1 " _ a2 —
NO = oo | 60 e@dc b e 0.0

Similarly for ¢ € (¢, 1,], there are constants qg, q; with

N() Iaff(l) Qo —qi(t— 1), t€(11,1],

N()

T(a)

After differentiating, we get

, 1 d
N@®» = Ta-1 ft: (t - "' o)Al — qu, t € (11,12,
and

Lo
NE) = mjo‘(l1—§)a_l—bo—b1l1,IG[O,fl],

NI = —bo,

! (4~ 1 ' a—1
N@) = Ta-D j; (1 =" o)dl —qi, t€ (1],
N = -a

Now we are applying the conditions of impulsive after simplification we get the following
1 n
@0 = o [ =0T o = by i+ 1N)
@) Jo
1 n 2
@ = o | -0 e - b+ S
I'e-1) Jo
Putting the values of qg and q; in given equation we get

1 g 1 "
N0 = m f (1= 0" o0+ f (11— O o ()de

+
F(a 1)

Generally for ¢ € (¢;_1, ¢;], reiterating the same procedure we have

— _ ~na-1 - a—1
RO = o f (-9 fr(odmr() f (1 = O™ (g
* Z(t—tJ f (tj= " Z(r(z>d§+2(r—r,)1 (R(t)))
j=1

k
+ > L) — by - bit.
j=1

f(n— O° o (O)dE — Qo — @it — 1), 1 € (0,111

f(l_ O o (Odl + (t = t)J1(R(11)) + L (R(t1)) = bo — by t.

“

&)

(6)

(N

®)

€))

(10)

(1)

(12)
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After evaluating and simplifying the BCs, we have the following for the constant by, by,

= £2 L ’ a-1 I a-1
by = A1+A2(F(Q)L(T 9] o-(é“)dg“+r( )Zf (tj - )" ' o(O)de

k 1
+ Z(T—tj)f (tj_()a ZF( )0(§)d§+2(7 tj)‘] (N(tj )+Z(T_tj)1 (N(tj)))
i=1 tj-1

Jj=1

22047 1 =2 a2
T A+ A4)(F(a/ D (T O el + r Z (tj g a(f)d{)
k
AQA4T Ao AsT 1
T (A1 + 8B + Ag) Z TRE) + ((m ) (B ¥ A4))g2(x(tj)) - (Al N )g 1R,
b, = Ay ( 1 (T 0 20(§)d§+ Z (t — O e)de
' A+ 03\D(@— 1) 1)

k
* Z J](x(t]))) B (A4 j— A3
=1

By substituting these values into (12), we obtain the desired solution as expressed in (3)

Jea0%e,).

N()

1 a—1 a—1
o (r 0 G(C)d§+m f (- O o()de

Ap ! a—1 NT. .
A+ A m \ft; (rm o7 ode JZ‘(I ) tj)J](N(tj))

k

Z(t—t,-) f - O (de

k
1
+ le(x(tj))+ e D 2

@ a2
i F(Q)Z f =¢) f’@)d“Z(f r( 5 (t, O 20(dl

+ Z(z — 1)J(N(t;)
j=1

k T
. A Ap AT 1 a2
. ;’-'“‘(‘f)))+(A1+A2)(A3+A4>(r(a_1> -0 o0
ko

1 a-2
+ mz BRUR U

(N )) fAg

r a-2
Ay + A3(r(a D J, (=" o(Ddd

+ Z TiN(@)) +

j=1

g a—2
+ mgﬁ_l(lj—§) o({)dl

+ jzk; 708() + (M . . Jea) + (Al l .

By modifying the term, we can derive the result in (3). Additionally, assuming that N is a solution to the given problem, a
straightforward calculation leads to the answer in (3), which satisfies (13),

)81 (N).
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Corollary 1. The solution to the problem in (1) is provided by

1 1 k £
NO = o f (t = "B R, RAW), R(x = )L + m D f (= OB NN, NG = D)t
I j=1 Y14~

t k k
Ay a1 . YALYAVYA Ay} _
s f (T = 0" 2R, RAW), V(T - §)>d§+(;( Dt T e S Z(r )
k "
tAy Lo a2e a Ao AgT Y 1
B A3 + Ay )F(a -1 ]Z::J L_l(tj g) .—(((, N(g)’ x(/l(g))’ N(T §))d§ * ((A] + A)(A3 + Ag) Az + Ay )F(a -1
t k k
x f (¢ = O PR NO.RAO) N = 0) + =51 D 1)) +( D a=1)
Tk Jj=1 Jj=1
k
A2 A4T Ao A4
(A1 + 22) (A3 + Ay) B AL+ Ay ;(T_ A +A4);Jj(x(tj))
AT gl(N)
* ((Al + A)(A3 + Ag) * Az + Ay )gZ(N) * Ay + Az.
(13)

Using Corollary 1, we change the problem (13) into a fixed-point problem, where 8 = #(NX). Based on this, we develop
results for solving the problem. To prove existence and uniqueness, we define five operators to help establish the main
results, as follows.

EO : ¥Y->Vv
k k
_ Aq A N Ay . ' AT t
on(t) - A1+ A Z I](N(tj)) Ay ) ]Z=1: Jj(x(t])) * ((Al + A2)(A3 + Ag) M Az + Ay )g2(x)

k k
N A A A
. 8® (Z(t 2847 2 Z(T—tj)-
Aty \H (Al +00)(D3 + Bg) DL+ Dy =

We define the operators for integral part as:

E, : ¥Y-V¥
ER@® = @ )f( = O AL RO, RQAWQ), R(x = {)dd - mf( = " AL RO, R, 8(t — 0))de,
E2 e
k
_ Aoy AyT Ao B
EX@ - = (Z(t (A FA)(A3 + A1) A+ Dy jz( 2 As + A4)

—] y a-2
% Ta—-1) ; Ll(tj = O LU RO, R, N(T = 0)dd,
E; : Y-VY¥
Ao lyT tAy

EsN(t) = ( _
RO (01 + 02)(B3 + Ag) A3+ Ag)T(@— 1)
E4 . ¥Y->v

f (T = "2 (&, R(Q), R, KT = )de,

K
) S L el _
ENO = G J o e se o

Let7:¥Y — Y, then 7 is defined by
TR(1) = EoN(1) + E{R(t) + ExN(1) + E3N(1) + E4R(2).

Hence, investigating the answer to the provided (13) problem is similar to investigate fixed point for the operator 7.
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Theorem 1. The operator Ey : ¥ — ¥ is Lipschitz continuous with a constant K; = Y\, K T € [0, 1). As a result, Ey is

also N-Lipschitz with the same constant K'I € [0, 1). Additionally, E satisfies the following relation

lEoNI < U + V||Y],

where
Aq Ay Agt AT T
U = Wi+ |lt+ + + ey
AL+ Ao (A1 + 22)(83 + Ay) (A +22)(23+44) A3+ Mg
+ 241
A+ A K
and
Aq Ay Ayt AT T
vV = Dy +|lt+ + + o
Ay + A (A1 + 22)(A3 + Ay) (A +22)(23+A4) A3+ Ay
+ 1
A+ Ap Y-

Proof. Using (CA) and (CA4), we have

sup |EgNy — EoNo| =
te[0,7] ze[O 7]

k k
e ]Zl (zj(xl(t,»)) - zj(xz(z,))) + ( ;(t 1)
Ay AT

(a1 + Az)(Aa + A4)

- Ji(Nqy (2 Ji(No(t )
P Z( - i) — 180,
AT )( ) (
+ N1 —g2(R) |+ N
((A1+Az)(A3+A4) As + Ay §2(81) — 82(82) ™ g1(N1)
- gl(xz))-
That is the result of further simlification
Ay i Ap AT .
EoN| — EgN < N = No|| + I+ KNy = N
IEN: = EoNall < | 5| = Sl + e+ 2 -l
AT T 1
+ N1 = Nall + | o I8 = 1)
(A1 + 82)(83 + A4) AyHde|l | m+A2%ml 2l
Hence one has
Mo A 4 A
1B - Eotall < K+ ’z 2847 : ’ 27 R
Ayt AZ (A1 + 22)(83 + Ay) (A1 + 20)(A3 + Ag) D3+ Ay
X |87 = Na|.
At o, wgl) 1N — Ro]
Using
TN A
K = ( K| +|ir + 2047 27 i W,
Ay + Az (A1 + 22) (23 + A4) (Al + M) (A3 + A4) NV
1
‘A] + Ap Wer )

then (17) becomes

[EoR1 — EoNoll < KNy — Rl

(14)

(15)

(16)

(7)
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Thus For constant K € [0, 1)Ej is Lipschitz
Using (CA;) and (CAs),for growth relation we get the following

k
ApAgT Ay
EoN|| = TN (¢ ( t— - t—t;
IEoN IS[‘SE] Z R+ Z( ) (A1+A2)(A3+A4) (A1+A2)JZ=:‘( )
t AQT t
- B ) sa ( A)N( )x‘
(A3 +A)) (() (A1+A2)(A3+A4)+A3+A4 2 j82( )+ A Ay gl()
Do AyT AT
EoN|| < Dq|IN]| + W l D;|IN]| + W
IENI < ' —| i w s T+(A1+A2>(A3+A4)( NI+ W) + |
b O N ) | N ), 18)
then (18), becomes
NER@III < U + VIINIL,
where U and V are given in (15) and (16).
Lemma 4. The operator
ER@ ¥ > VY
is continuous and satisfies the following growth condition
AY) ¢
EN s(l ) D NID. 1
VENI < (14 1 e 5y P+ WrIND 19)

Proof. Let K, be a sequence in B, = {N € N : ||N]| < r} such that N,, - Nasn — oo.
This implies that

_ na-l1
« Ff)) (h(Z.Re) ~ WL, R)) — 0,1 — oo,
and
(r = 0!
W(/’l({, Nn) - h(g, N)) — O,I’l — 0.

By applying the Lebesgue Dominated Convergence Theorem, it can be observed that
|E1(N,) — E;(NR)|| = 0 as n — oo. This suggests that E; is a continuous function.
Using (CA3), for growth relation then

a—1
E®O) < o f (1 = O F (LR N, R(r - 5))|d§+‘A e
(t—n)" Ny | (T—=1)"
sup BN < ,e[o,ﬂ(r(m T e 1))<Df+Wf||><||>,
IENI < (1+"A1A+2A2 |)r(;+l)<Df+Wf||Nn>.

Theorem 2. The operatorE| : N — N is defined as compact and satisfies the N— Lipschitz condition with a zero constant.

Proof. Clearly E; satisfies growth condition so E; is bounded on By = {N e N : |N]| < r} .
Let 8 € By, we have

a

Ao ) T
INa+1)

Al + Ap

IE\N| < (1 +

Dy + WylINI) < Q1.

f(T O NG R, R, B = )ld,
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So E; is bounded.
We learn more 0 < #; < 1, < 7, we show that E| is equi-continuous.

1 h
[E\(R(11)) — Ex(R(1))] < TCX) f (t — é’)a_l|f((§, R, R, N(T = O)\d¢
A2 ! ) a-1
e ) oS
A2 1 ’ a—1
e o G A s

1 "2
-t | o i@ N - o
(@) t

One has

Dy + WylINID)

[E\(N(t1)) — E1(R(1)] < Tat D

(¢ =107 = (&= 107).

As 1} — 1, then |[E{(R(t1)) — E1(N(%2))| — 0. Hence E| is equicontinuous so E; is compact.
then by Proposition ??, E; is 8— Lipschitz with constant zero.

Lemma 5. The operator
E,¥Y->Y

is continuous and satisfies the following growth condition

Ny |) T(Y+1

IEN] < (z+ TSNy [vom

(Dy + W|INID. (20)

Proof. Let K, be a sequence in By = {§ € X : ||N|| < r} such that N, —» N asn — oo.
this implies that

(-

Ia-1) (h({,Ny) = h(£,R)) = 0,n — oo,

By applying the Lebesgue Dominated Convergence Theorem, it can be observed that
IE2(R,) — Ex(N)]| = 0 as n — oo.

This suggests that E, is continuous..
Additionally, for the growth relation using (CA3), the following holds

k

k
Z(t 1)+ iYYiVig iy) Z(T £) Ay
— 1 — —-tj) -
= (Al + Az)(A3 + Ag) Ay + Ay = Az + Ay

I[Ex(R@) <

SRR
x > Ty MR RO N - )l

= Jy I'(a)
which yields
k . -2
Dy AT Nt =" B
t:[l(l)gj |[E2(R(0)] < IESE(J)BJ ;(I—tjﬂ (o1 7 2)(0s + B) Xft/_l T | (£, R(0), R(AUD), N(T — {)ldL.
thus one has
Ny a+1
IE2(I < |+ it ) T 50 X F(a)(Df"‘ WElINID).

Which is the required relation.
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Lemma 6. The operator E; : N — N is compact and N-Lipschitz with a zero constant.
Proof. Similarly, it can be derived as shown in the Lemma 5.
Lemma 7. The operator
E;:¥Y->Y
is continuous and meets the following growth condition

AoAg " T0z+l
(A1 + 22)(23 +29)1 T(@)

lEsN| < (Dy + WyIINID.

Proof. Let N, be asequence in B = {N € N : ||[N|| < r} such that X, - Nasn — co.
this implies that

(-

F(a _ 1) (h(g»Nn) - h({, N)) = O,n — 00,

Using Lebesgue Dominated convergence theorem
[|E5(N,) — E3(N)|| = 0asn — oo.

This means that E5 is continuous
For the growth relation using (CA3), then

ApA4T A4

[Es(R(D)| < (A1 + M) (A3 + Ag) - A3+ Ay

1 T
- f (T = "I N, RAWQ), R(x = )lde,

X
ala

ApAqT

sup [Ex(®R@)I < sup | 7o e

1€[0,7] 1€[0,7]

X f (T = O™ UL W), R, R(x = )L

k

Hence one has

a+1

A
204 %
()

E;(N <
IE@Oll - < (A1 + A2)(A3 + Ay)

(Dy + WyINID.

Which is the required relation.
Lemma 8. The defined operator as, E; : N — N is compact and E5 is N— Lipschitz with zero constant .
Proof. As proof is simple, we have omitted it.
Lemma 9.
E,:¥Y->VY

as the operator is continuous and satisfy the following growth condition

a

Ay I
X
Ta+1)

+ Ay

IEN] < ‘Al (D; + WINI).

Proof. Let N, be a sequence in By = {§ € X : ||N|| < r} such that N, —» N asn — oo.
this implies that

;="

W(h({, Rn) = h(,R)) = 0,n — co,

Using Lebesgue Dominated convergence theorem
|E4(X,) — E4(N)|| = 0 as n — oo. this shows that E4 is continuous.
For the growth relation with (CA3), we have

Ay
A+ An

EAR@) < ]

1 < j ol
I@) ; ft,_l(” ~ O WG RO, RAQ), R = ),

21

(22)
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sup [ExR@) < sup |—2—|x L5 o w i
4 < ,
te[0.4] te[0.4] 1 A1 + A2 Ia+1) : 4
At T
EuN|| < X D+ W, NID.
IENI < | 5| X s 0+ WND

This is the needed relation.
Lemma 10. The operator E4 : 8§ — N is compact and N-Lipschitz with a zero constant.
Proof. As proof is simple, we have omitted it.

Next we demonstrate that the four operators E1, E», E3 and E4 are combined,meet the growth condition and are continuous.
Finally, we show that the four operators E1, E,, E5 and E4 are compact and 8— Lipschitz with zero constants.

Theorem 3. The operators E1,E», E3 and E, : ¥ — Y, are continuous and satisfy the following relation

Ay T Ar Ay o+l
IE1N]| + |E2NI| + [[E3N]] + |E4N]| < (1 + + |+
(a1 + )T @+ 1) (A1 + 22)(A3 + 2g) 1T (@)
' Aoy o+l . ' A " I )
(A1 + M) (3 +29)l T(@) (A1 +22)] al@+1)
X (Dy+ Wf||?<||) (23)

Eq, E», E5 and E4, are all continuous,hence E| + E> + E3z + E4, is also continuous.
Lemma 11. The operators Ey, Ey, Ez and E4 : ¥ — ¥, are N— Lipschitz and compact with zero constant.

Proof. Since E1, E;, E5 and E4, are compact so E + E; + E3 + Ey, is also compact,hence according to Proposition ??, It
is N-Lipschitz with a constant value of zero.

Theorem 4. Assuming that (CA,),(CA,),(CA3), and (CAy) hold, the problem 3 has at least one solution N € ¥, and the
solution set is bounded in V.

Proof. Let the operators Ey, E, E», E3, and E4, along with t: ¥ — ¥, be defined in the previous section. They are
continuous and bounded. Moreover, Ej is X-Lipschitz with a constant K € [0, 1), while E}, E;, E3, and E4 are N-Lipschitz
with zero constants. Let

H = {X € ¥ : there exist A € [0, 1] such that & = ATN}.

We aim to show that H is bounded in ¥. Let X € H, A € [0, 1] such that ||N|| = A||N]|. It follows from (14) and (23) that

NIl < |ﬂ|(||Eo><|| +IEI + I E2NI| + [1EsNI| + ||E4x||).

Ao T Ny o+l
NI < /l[U+VN +(1+ ) +(l+ )
” ” | | ” ” A1+ Ap F(a/ + 1) (Al + Az)(A3 + A4) F(a)
Ay Ay Ta+1 Aq I ]
+ X WS + Dy).
(A1 + 20) (23 + 20| T(@) a1+ 221" T(a+ 1) (WISl +Dy)

This inequality shows that H is bounded. If not, assume that { = [X| — co. By dividing both sides of the inequality by ||

Ay o A2 A 7o+l
U*"”“'H(“ m)m+(” W)m
1 < I/ll[
¢
JiVYiV] ‘r"_+I Aq % I
(A1+Az)(A3+A4) l"(a) A1ty r((l+1)
+ z ] X (WIIN|[ + Dy).

taking limit as { — oo, we get the following relation.
1 <0, which is a contradiction. Therefore, 7 must be bounded in ¥ and have at least one fixed point.
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Theorem 5. Assuming the hypothesis (CAs) and that K < 1, where

[( T A It Ay T ' Aoy [rotl
K = + X + X + |+ X
INa+1) AL+ Ap T'a+1) A1+ A INa+1) (A1 + 22) (A3 + Ay) I'(a)
A A @ A . A A . A
204 T )Kx N ‘ 1 i ‘ 204 K+ ( 2T
(rap + 22)(A3 + 249)1 T(@) Ay + My (A1 + 22)(A3 + Ay) (A1 + 22)(23 + Ag)
Wy, + |———|wy, |-
A3 + Ay 82 A+ Ap gl]

Then the problem (1) under considration has unique solution.

Proof. Assuming there are X, N, € ¥ be two solutions of the given problem (1), then

[ KNT“ Ay KNITU Ay KNT“
[T = y|| < + X X
[T+ 1) [a1+281 T(a+1) [ar+2821 T(@+1)
+ i+ VAL YAV I(NIT(H'1 JAG YAV Kxt®
(A1 + A2)(23 + Ag) I'(a) (a1 + 22)(23 +A9)1 T@)
Ay ; ‘ Loy ; ’ T
+ K+
e (A1 + 22)(A3 + 8|7 (a1 + 82)(A3 + B4)
1
+ ——|w,, + |—— N1 —N
Az + Ay Weo ‘Al + Ay wgl]” ! 2”
03 A l Y04 A 10
81— 8]l < [( ’ +' L VS +‘ 2 |y T +'
Ia+1) [A1+20] T(a+1) [Ar+40,] T(@+1)
Ay A Ji a+1 A A @
bYAV] » T + bYAV] « T )Kx
(A1 +2) (A3 + 291 T(@) (A + ) (a3 +84)1 @)
Aj i ‘ A2l - AoT
A+ ool ! (A1 + 22)(A3 + 2|7 1A + 82)(23 + Ag)
_— + |[—— N1 = Nof|.
A3 + Ay “eo )Al + Ay wg]]n ! 2l

Thus, 7 is a contraction mapping, and by the Banach fixed-point theorem, 7 has a unique fixed point. Therefore, the

problem has a unique solution.

4. STABILITY ANALYSIS

Establish stability results for the obtained outcome, with stability based on the U-H concept this stability is determined

about the best approximate or exact solution of the problem.
Remark 1. Let for € > 0 and we have some independent mapping say ¥, v;,v; such that

up @)l < €, vi()| < eand [vj(t)| < € where each t € [0,1] and i, j=1,2,3, ..., m.

up © DEN(D) = E(1, R(1), N, R(T = 1) + ¢(0), 1 # 1, 1;

uz : AN() = LN(t))) + vi(t) and AN (1) = J;(R(;)) + v;(1)

uy . We use the inequalities |g1(R)| < x ¢ IN| + g, < € and |g2(R)| < xo,IN| + g, < € for the easiness.
Remark 2. The answer of the problem for & € ¥ to

DER(1) = E(1, N(@), R, R(T =) + (), t #1;, 1 <£<2,
AR(®) = L)) + vi, aN (1) = J(R(@) + v;,
AIR(0) + 2a8(1) = g1(R), A38(0) + a4X'(1) = g2(N),

(24)
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with the help of Lemma 2, we have the following relation for problem (6), as

1 !
N() = FR@O) + — | (=0 'w(@0)d
(1) = F(R(®) + re J, (1= W()ds

1 Aq k
T +A2>(T§>Z

j=1 v~

1j

1(:,- O 109))/4

“ie ] o O @)

k
ApAgT Ay
* (Z(t_ 1)+ (A + A)(As + Ag) AL+ Aa ;(T_ )

IA4 1 kot -
B A3+A4)X TE-1) ;L_](U—() W(0)dd

N ( Ay A4T Y ) 1
(A +22) (A3 +A4) A3+ M4)T(E-T)
k k
— >N + (0-1)

2 j=1 j=

x f (0= O Ppiendc + —!

A

k k
ApAqT Ay A4
N - > (1))~ ) > vi(N())
(A1 + M) (A3 + Ag) Ay + Ay = Az + Ay ) £

J=1
AT t gl(x)
* ((Al + Az)(A3 + A4) * A3+ Ay )gZ(N) * A+ Az'

Where F(N(?)) is given in following

1 !
F(R(®) = ) (t = OF B N, R, N(T = 0))d¢
1 ( Aq

" (81 + 2)\T(@)

k tj
> U OF B R, ), N = )d¢

=11

- = ! _ onélm B
@ ), 9T EERO N NG 0)dc)

k

k
Aoy A
H(D-rp+ 204 -2 N1
P (81 +22)(83 +84) A1+ 82 4

- ! N " . £-2m
)X TE-1) ; y (t; — OF PE((L, N(), R, N(T = 0)dL

A3 + Ay 1

+< A A4T R ) 1
(A +22) (A3 +A4) D3+ 04)T(E-1)

t k k
N - A1 (Nt — ¢
x f (7 = OF P RQ). RAWQ). N 4))d_z+mszzll,m(zpn(;(t )

k k
ApA4T Ay} |74V )
+ - —tj) — Ji(N(t;
(A1 + 20) (B3 + A1) AL+ 22 ;(T ? A3+ Ag ; i)

21(N)
A + A2.

+ ( 227 + ! ) N) +
(A1 + 282)(A3 +84) D3+ Ly 82

(25)

(26)
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From (25), we can write for ¢ € [¢;_1, ;] one has

1 !
‘xm F(xm)—r@ (t = OF W)L

(N
(A1+A2) r(g)th l(f/ O ()dl

i ey
22 [ -0 o)
k
ApAyT Ay
- (Jz:;(t - tj) * (Al + Az)(Ag} + A4) - Ay + Ay ;(T a tj)
1y R ol S 27
‘A3+A4)Xr(g_1>;f,j_,(’f‘§) s e
_( Ao AyT _ tAy ) 1
(A1 + 22) (A3 + Ag) A3+ 24/T(E-1)
! k k
_ pE2 A1 (N(1)) — .
x f (-0 mm 2w (;(r )
k k
Ay AT Ay A4
B (Al + Az)(A3 + A4) a A+ Ay ]Z:;(T - tj Az + A4) ]Z:l: Vj(N(tj))
AT giN)
* ((Al + M)Az + Ag) * A3 + A4)g2(x) B A+ Ay '
After this, we have
1
_ el d
<- %) (l O W )ldg
1 A (Y £-1
T Az)(@ 2 ), o= 0w
A_ _ ! d
e 5 ( O Oz
k
Ao A4T Ay
- ( Z(I B tj) * (Al + Az)(A3 + A4) a A+ Ay ;(T - tj)
Ay £-2 28
Srsvw ke f_ 5 Z X (r, OF WO (28)
_( A A4T Y ) 1
(A +22) (23 +24) A3+ 24/T(EE-1)

k
N - (Y-
=1
A k
X L); Iy (R(1))

N
( AoT 12 (8)] lg1(N)]

(A +A2)(A3+A4) A3+ Ay ) N

Xf(T—é’)_

Ay A4T
: S
(A1 +22)(A3+44) D1+ 12 P
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Now using the defined conditions u, u,, u3 and us4 to (28), then we get the following relation as

€

rE+1)
k k
Ay AT iy}
* 6( ;(t B tj) * (A] + Az)(A3 + A4) - A1+ A ;(T B tj)
i )ZIJLI(G — 1)t ( Ao AT
Az + Ay ') (A1 + 22)(A3 + Ag)

A4 )e(r—tk)f“ Arke (zk:(t_tj)
j=1

CmtA) D@ A+

A

1 ( A
(A + M)\T(E+ 1)

re+1)

< (t—tk)‘f+e[ (t;— ;)" +

k
Ao A4T Ay A4
- - Z(T —t) - ke
(A1 + 22) (A3 + Ay) A1+ Ay = A3 + Ay
( AT t

+
(A1 + 082)(A3 +84) D3+ Dy

1
N| + .
s alN+ )

82|x| +ﬂgz

Taking the supremum norm to (29), then we have

where

1 1 A1 Ay
e Ml v Ve iy
[+ Lar+)\I'E+1) TE+1D
+ (1 + 284 _ Lo
(A1 +2) (A3 +44) AL+ D
Ny ) 1 N ( A A4T Ay ) 1 Mk
A3+ A4T(E)  \(ar+ 22)(A3 +Ag) A3+ 284/T(E) AL+ 2o
_( _ VALYV B Ao _ Ay )k
(A + 22) (A5 + Ay) Al + Ap A3 + Ay

(R S I R

(A1 + 22)(A3 + Ay) A3 + Ay Ay + Ay ’

Now from (30), we have if we write & = T(N) for the right hand side then,
IN—T(R)| < eQ

Theorem 6. The solution of the propose problem is U-H stable
and generalized U-H stable if K < 1.

Proof. Let N € P be any solution of (1) and 8 € ¥ be unique solution.
IN(D) = R = [N@) - TR@),
= N(t) = TR@®) + TR(@) — TR()),
<IN@) = TR@)| + [TR(t) - TR(@),

Using (34),implies
IN@) — K@) < €Q + IR — TRQ).

Taking norm of both sides and the help of theorem (5) ,we have

IN@) = ROl < eQ + KN = ]|

(t—1-1)

(29)

(30)

&1V

(32)

(33)
(34)
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Where
[ 7% Ay I AY] i
K: = ( + X + X
\N[E+1D)  [ar+2,0 TE+1) [ar+01 TE+1D
ArA 5!
+ |+ 274 X
(a1 +8)(Aa3+ 091 T
Ax Ay ) ’ Ay i
+ X — |Kx +
(ror + 83 + a0l TO ) o+,
+ |+ 284 K+ ‘ AT
(A1 + 22)(A3 + Ag) (A1 + 22)(A3 + Ag)
* A3 + Ay wg2+‘A]+A2 wgl].
Which yields
N-N| < ,
IN =8l < 7=
Hence solution is U-H stable Further if ¢ : (0, 1) — R*, 34(0) = 0 Hence yields
- Q
N-N|I < ,
IN -8l < T—p-v(

Hence solution is generalized U-H stable.

5. TEST PROBLEM

We take the follwing test problem for different values suchasy = 3,4; = 3,4, = §,a3 = 3,00 = 2,1 = 1,Dp = Wy =
0.4, Wl = W2 = Mg, = Mg, = O.l,Dl = Dz = O-4ng1 =Xg = 0.001

Example 1.
IR(p) = SPETD. ! _1 1
D2R(t) = 1005 2 [sin[N@)] +8(5) + 8l = L1 € [0, 1], 1 # =,
1 1 V(IND
N(=) = IN(z) = ——"—,
aR(3) = I(R(3) 60+ V(D
AN (B = Bw(hy =
3 37 60 +INI5
L) + L1y = 22ERD,
5 8 60 + [N
| 1., . exp(=sin|N])
N O- 58(1) T

With the help of theorem 4, we can show the operators Ey, E1, E», E3 and E, are bounded and cotinuous. For this we take
H ={X € ¥ : there exist A = 1, such that 8 = AtN}.

We demonstrate that for the above values, H is bounded in V. Let X € H, A € [0, 1] such that ||N|| = A||tN||. From (14) and
(23), it follows that

NIl < I/lI(IIEoNII +[|EWN|| + [|E2N]| + [IE3N] + IIE4NII)-

After simplifying we have the following relation as

NI < (0.409 +0.702|I8]l + (1 + 0.29 + 0.969 + 0.11 + 0.47) x 0.4(1 + ||x||)).

NI < 1.541 + 2.022/N]l.

Clearly H is bounded. For the uniquness result we take the values Ky = 1—12, K{ = 1—12, K = 2—14,ng = é,wgz = %,l =1,

then we have
K =(0.7522 + 0.4628 + 0.2893 + 1.3017 + 0.1733) x (0.0833) + (0.6902),
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this gives
9383

~ 10000°

We can conclude that the problem has a unique solution since all of Theorem 5’s requirements are met. Furthermore, we
have K < 1, so in view of Theorem(6), the solution is Ulam-Hyers(U-H) Stable.

Example 2.
DN - ﬁ[tanl?‘(fﬂ . N(é) +N|( - %)I],t ef0,1],1# %
AN(:_‘) _ I(N(%) = %’
AN'(%)I = JI(N(ZIR = %’
%x«» + %N(l) - %(;ND’
EN O - ¥ () = 2R

We take the follwing different values such as y = %, A =
He = Mg, =0.01,D; = Dy = 0.2, xq, = Xg, = 0.02
With the help of theorem 4, we can show the operators Eq, E1, E», E5 and E4 are bounded and cotinuous. For this we take

, T = 1,Df = Wf =0.4,W1 = W2 =

H ={X €Y : there exist A = 1, such that & = AT}.

We demonstrate that for the given values, H is bounded in ¥. Let N € H, A € [0, 1] such that ||N|| = A||TN||. It follows from
(14) and (23) that

NI < |A|(||Eoz<|| +ILEI + [ E2NI| + [1EsNI| + ||E4x||).

After simplifying we have the following relation as

NIl < (0.952 + 0.504||N]| + (1 + 0.0030 + 0.372 + 0.072 + 0.059) x 0.2(1 + IINII)).

NIl < 1.253 + 0.805]IN]].

Clearly H is bounded. For the uniquness result we take the values Ky = %, K = %, Kji = 55, Wy, = % Wy, = %,l =1,
then we have
K = (0.086 + 0.053 + 0.189 + 0.351 + 0.048) x (0.1) + (0.904),

this gives

_ 976

= 1000°
We can conclude that the problem has a unique solution since all of Theorem 5’s requirements are met. Furthermore, we
have K < 1, so in view of Theorem 6, the solution is Ulam-Hyers(U-H) Stable.

6. CONCLUSION

A detailed analysis has been established for a class of impulsive FODEs involving Robbin boundary conditions. For
the required analysis, we have used topological degree of Mahwin. Sufficient conditions have been developed for the
existence and uniqueness of solution to the proposed problem. Also, an example has been given to demonstrate our
theoretical results.
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