In Vitro And Theoretical DNA Interaction Study of Zinc Complexes
DOI:
https://doi.org/10.48165/gjs.2024.1209Keywords:
Zinc complexes, DNA interaction, In vitro studies, Theoretical modeling, Bioinorganic chemistryAbstract
In this work, we undertake a tentative analysis into the multi-layered realm of zinc complex DNA interactions, integrating empirical in vitro findings with cutting-edge theoretical modelling. The focus of our study involves the synthesis and thorough characterization of the Zn(DIP)2(DMP)2·2H2O complex, with the aim of establishing a fundamental comprehension of its structural attributes. The inquiry is built upon the structural foundation provided by analytical techniques such as UV-visible and IR spectroscopy, as well as 1H NMR data. In the molecular framework presented, we systematically investigate the principles of binding, thermodynamics, and kinetics that govern the dynamic interactions between zinc complexes and DNA. The progression of our exploration is characterized by a comprehensive examination of several spectral indicators and theoretical simulations, which serve to elucidate alterations in absorption spectra, disparities in binding constants, and structural adaptations. Our study focuses on the theoretical realm, utilizing computational methods and quantum chemistry calculations to explore the electronic structure, energy profiles, and binding energies. This approach allows us to gain a more profound theoretical comprehension of these interactions. This review serves to enhance our comprehension of the complex interactions between zinc and DNA, shedding light on potential applications in drug design, targeted delivery, and DNA-based nanotechnology. It underscores the importance of interdisciplinary collaboration in fully harnessing the diverse capabilities of zinc complexes across multiple domains.References
[1] Das, M., Mukherjee, S., Koley, B., Choudhuri, I., Bhattacharyya, N., Roy, P., ... & Maity, T. (2020). Developing novel zinc (ii) and copper (ii) Schiff base complexes: combined experimental and theoretical investigation on their DNA/protein binding efficacy and anticancer activity. New Journal of Chemistry, 44(42), 18347-18361.
[2] Al-Abdulkarim, H. A., El-khatib, R. M., Aljohani, F. S., Mahran, A., Alharbi, A., Mersal, G. A., ... & Abu-Dief, A. M. (2021). Optimization for synthesized quinoline-based Cr3+, VO2+, Zn2+ and Pd2+ complexes: DNA interaction, biological assay and in-silico treatments for verification. Journal of Molecular Liquids, 339, 116797.
[3] Abu-Dief, A. M., El-Khatib, R. M., Aljohani, F. S., Alzahrani, S. O., Mahran, A., Khalifa, M. E., & El-Metwaly, N. M. (2021). Synthesis and intensive characterization for novel Zn (II), Pd (II), Cr (III) and VO (II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. Journal of Molecular Structure, 1242, 130693.
[4] Aljohani, F. S., Abu-Dief, A. M., El-Khatib, R. M., Al-Abdulkarim, H. A., Alharbi, A., Mahran, A., ... & El-Metwaly, N. M. (2021). Structural inspection for novel Pd (II), VO (II), Zn (II) and Cr (III)-azomethine metal chelates: DNA interaction, biological screening and theoretical treatments. Journal of Molecular Structure, 1246, 131139.
[5] Kheradmand, A., Negarestani, M., Mollahosseini, A., Shayesteh, H., & Farimaniraad, H. (2022). Low-cost treated lignocellulosic biomass waste supported with FeCl3/Zn (NO3) 2 for water decolorization. Scientific Reports, 12(1), 16442.
[6] Gogoi, H. P., Singh, A., Barman, P., & Choudhury, D. (2022). A new potential ONO Schiff-Base ligand and its Cu (II), Zn (II) and Cd (II) Complexes: Synthesis, structural Elucidation, theoretical and bioactivity studies. Inorganic Chemistry Communications, 146, 110153. [7] Khursheed, S., Siddique, H. R., Tabassum, S., & Arjmand, F. (2022). Water soluble transition metal [Ni (II), Cu (II) and Zn (II)] complexes of N phthaloylglycinate bis (1, 2-diaminocyclohexane). DNA binding, pBR322 cleavage and cytotoxicity. Dalton Transactions, 51(31), 11713-11729. [8] Ma, X. R., Lu, J. J., Huang, B., Lu, X. Y., Li, R. T., & Ye, R. R. (2023). Heteronuclear Ru (II)-Re (I) complexes as potential photodynamic anticancer agents with anti-metastatic and anti-angiogenic activities. Journal of Inorganic Biochemistry, 240, 112090.
[9] Skoczynska, A., Lewinski, A., Pokora, M., Paneth, P., & Budzisz, E. (2023). An Overview of the Potential Medicinal and Pharmaceutical Properties of Ru (II)/(III) Complexes. International Journal of Molecular Sciences, 24(11), 9512.
[10] Choroba, K., Filipe, B., Świtlicka, A., Penkala, M., Machura, B., Bieńko, A., ... & Fernandes, A. R. (2023). In Vitro and In Vivo Biological Activities of Dipicolinate Oxovanadium (IV) Complexes. Journal of Medicinal Chemistry.
[11] Dege, N., Özge, Ö., Avcı, D., Başoğlu, A., Sönmez, F., Yaman, M., ... & Kurt, B. Z. (2021). Concentration effects on optical properties, DFT, crystal characterization and α-glucosidase activity studies: Novel Zn (II) complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 262, 120072.
[12] Gunning, Y., Davies, K. S., & Kemsley, E. K. (2023). Authentication of saffron using 60 MHz 1H NMR spectroscopy. Food Chemistry, 404, 134649.
86 Shahzadi et al, Global Journal of Sciences, 1(2), 2024, 80-87
[13] Lahinakillathu, N., Ayyamperumal, S., Kurup, P. M., Damodaran, K. K., Antonysamy, K., & Maheswaran, S. (2023). Synthesis, spectral characterization, and catalytic efficiency of aroylhydrazones Cu (II) complexes. New Journal of Chemistry.
[14] Kumar, Y., Singh, N. K., Singh, V. D., Ali, I., Tiwari, R. K., Kumar, A., & Pandey, D. S. (2022). DNA/Protein binding and anticancer activity of Zn (II) complexes based on azo-Schiff base ligands. Inorganica Chimica Acta, 538, 120963.
[15] Ragab, A., Ammar, Y. A., Ezzat, A., Mahmoud, A. M., Mohamed, M. B. I., Abdou, S., & Farag, R. S. (2022). Synthesis, characterization, thermal properties, antimicrobial evaluation, ADMET study, and molecular docking simulation of new mono Cu (II) and Zn (II) complexes with 2-oxoindole derivatives. Computers in Biology and Medicine, 145, 105473.
[16] Almarhoon, Z. M., Al-Onazi, W. A., Alothman, A. A., Al-Mohaimeed, A. M., & Al-Farraj, E. S. (2019). Synthesis, DNA binding, and molecular docking studies of dimethylaminobenzaldehyde-based bioactive schiff bases. Journal of chemistry, 2019.
[17] Kock, F. V. C., Costa, A. R., de Oliveira, K. M., Batista, A. A., Ferreira, A. G., & Venâncio, T. (2019). A supramolecular interaction of a ruthenium complex with calf-thymus DNA: a ligand binding approach by NMR spectroscopy. Frontiers in Chemistry, 7, 762.
[18] Daryanavard, M., Jannesari, Z., Javeri, M., & Abyar, F. (2020). A new mononuclear zinc (II) complex: crystal structure, DNA-and BSA-binding, and molecular modeling; in vitro cytotoxicity of the Zn (II) complex and its nanocomplex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 233, 118175.
[19] Sharfalddin, A. A., Emwas, A. H., Jaremko, M., & Hussien, M. A. (2021). Synthesis and theoretical calculations of metal-antibiotic chelation with thiamphenicol: in vitro DNA and HSA binding, molecular docking, and cytotoxicity studies. New Journal of Chemistry, 45(21), 9598-9613. [20] Albert, H. M., Jemima, T., & Gonsago, C. A. (2023). Synthesis, spectroscopic, optical, and thermal characterizations of Zinc (Tris)-Thiourea Sulfate: A metal-organic crystal. Journal of Fluorescence, 1-7.
[21] Dangana, R. S., George, R. C., & Agboola, F. K. (2023). The biosynthesis of zinc oxide nanoparticles using aqueous leaf extracts of Cnidoscolus aconitifolius and their biological activities. Green Chemistry Letters and Reviews, 16(1), 2169591.
[22] Chen, Y., Lee, C. K., Wang, C. T., & Jeng, S. C. (2023). Development of a compact broadband circular dichroism spectropolarimeter for circular polarizer applications. Optics and Lasers in Engineering, 163, 107480.
[23] Kalidas, C., & Sangaranarayanan, M. V. (2023). Circular Dichroism as a Tool for the Analysis of Biochemical Reactions. In Biophysical Chemistry: Techniques and Applications (pp. 361-373). Cham: Springer Nature Switzerland.
[24] Batibay, G. S., Karaoglan, G. K., Kose, G. G., Kazancioglu, E. O., Metin, E., Kalindemirtas, F. D., ... & Arsu, N. (2023). DNA groove binder and significant cytotoxic activity on human colon cancer cells: Potential of a dimeric zinc (II) phthalocyanine derivative. Biophysical Chemistry, 295, 106974.
[25] Singh, A., Maiti, S. K., Gogoi, H. P., & Barman, P. (2023). Purine-based Schiff base Co (II), Cu (II), and Zn (II) complexes: Synthesis, characterization, DFT calculations, DNA binding study, and molecular docking. Polyhedron, 230, 116244.
[26] Huang, A., Hu, A., Li, L., Ma, C., Yang, T., Gao, H., ... & Chen, G. (2023). Effect of Zn2+ on emodin molecules studied by time-resolved fluorescence spectroscopy and quantum chemical calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 289, 122217.
[27] Sahoo, D. K., Dasgupta, S., Kistwal, T., & Datta, A. (2023). Fluorescence monitoring of binding of a Zn (II) complex of a Schiff base with human serum albumin. International Journal of Biological Macromolecules, 226, 1515-1522.
[28] Dinçer, R., Karabiberoğlu, Ş. U., & Dursun, Z. (2023). Simultaneous electrochemical determination of trace zinc (II), cadmium (II) and lead (II) in lipsticks using a novel electrode covered with bismuth/over-oxidized poly (xylenol blue) film. Microchemical Journal, 189, 108548. [29] Kokulnathan, T., Wang, T. J., Murugesan, T., Anthuvan, A. J., Kumar, R. R., Ahmed, F., & Arshi, N. (2023). Structural growth of zinc oxide nanograins on carbon cloth as flexible electrochemical platform for hydroxychloroquine detection. Chemosphere, 312, 137186. [30] Bessega, T., Chaves, O. A., Martins, F. M., Acunha, T. V., Back, D. F., Iglesias, B. A., & de Oliveira, G. M. (2019). Coordination of Zn (II), Pd (II) and Pt (II) with ligands derived from diformylpyridine and thiosemicarbazide: Synthesis, structural characterization, DNA/BSA binding properties and molecular docking analysis. Inorganica Chimica Acta, 496, 119049.
[31] Adam, M. S. S., Abu-Dief, A. M., Makhlouf, M. M., Shaaban, S., Alzahrani, S. O., Alkhatib, F., ... & Mohamad, A. D. M. (2021). Tailoring, structural inspection of novel oxy and non-oxy metal-imine chelates for DNA interaction, pharmaceutical and molecular docking studies. Polyhedron, 201, 115167.
[32] Sangwan, V., & Singh, D. P. (2019). Macrocyclic Schiff base complexes as potent antimicrobial agents: Synthesis, characterization and biological studies. Materials Science and Engineering: C, 105, 110119.
[33] Akhter, S., Khursheed, S., Arjmand, F., & Tabassum, S. (2023). Revelation of potential bioactive water-soluble Boc-l-valine and imidazole appended metal complexes {M= Co (ii), Cu (ii) & Zn (ii)}: synthesis, characterization, ct-DNA binding, pBR322 cleavage, SOD mimetic, and cytotoxicity studies. Dalton Transactions, 52(16), 5141-5154.
[34] Revathi, N., Sankarganesh, M., Dhaveethu Raja, J., Vinoth Kumar, G. G., Sakthivel, A., & Rajasekaran, R. (2021). Bio-active mixed ligand Cu (II) and Zn (II) complexes of pyrimidine derivative Schiff base: DFT calculation, antimicrobial, antioxidant, DNA binding, anticancer and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 39(8), 3012-3024.
[35] Carames-Mendez, P. (2019). Design, synthesis and characterisation of ruthenium complexes as medicinal therapeutic agents (Doctoral dissertation, University of Leeds).
[36] Babgi, B. A., Domyati, D., Abdellattif, M. H., & Hussien, M. A. (2021). Evaluation of the Anticancer and DNA-Binding Characteristics of Dichloro (diimine) zinc (II) Complexes. Chemistry, 3(4), 1178-1188.
[37] Hajibabaei, F., Sharifinia, S., Moghadam, N. H., Salehzadeh, S., Derakhshandeh, K., & Khazalpour, S. (2022). In vitro anticancer activities, multi spectroscopic and in silico DNA binding studies of propranolol drug and its new Zn (II) complex. Results in Chemistry, 4, 100575. [38] Shahabadi, N., Abbasi, A. R., Moshtkob, A., & Hadidi, S. (2020). Design, synthesis and DNA interaction studies of new fluorescent platinum complex containing anti-HIV drug didanosine. Journal of Biomolecular Structure and Dynamics, 38(10), 2837-2848.
[39] Kharpan, B., Paul, S., Shyam, A., Paul, P. C., Choudhury, S., & Mondal, P. (2023). Glycine methyl ester based Schiff base bearing long alkoxy arm and its zinc (II) and copper (II) complexes: Synthesis, mesomorphism, photoluminescence, CT-DNA interaction and DFT study. Journal of Molecular Structure, 135968.
87 Shahzadi et al, Global Journal of Sciences, 1(2), 2024, 80-87
[40] Abdel-Rahman, L. H., Al–Farhan, B. S., Al Zamil, N. O., Noamaan, M. A., Ahmed, H. E. S., & Adam, M. S. S. (2021). Synthesis, spectral characterization, DFT calculations, pharmacological studies, CT-DNA binding and molecular docking of potential N, O-multidentate chelating ligand and its VO (II), Zn (II) and ZrO (II) chelates. Bioorganic Chemistry, 114, 105106.
[41] Liu, J. J., Liu, X. R., Zhao, S. S., Yang, Z. W., & Yang, Z. (2020). Syntheses, crystal structures, thermal stabilities, CT-DNA, and BSA binding characteristics of a new acylhydrazone and its Co (II), Cu (II), and Zn (II) complexes. Journal Of Coordination Chemistry, 73(7), 1159-1176.