Role of metabolome in enhancing crop resilience to abiotic stress in  horticultural crops-A review

Authors

  • Abdullah Zaid Ph.D. Scholar,Department of Fruit Science, College of Horticulture, Banda University of Agriculture and Technology, Banda Author
  • Anand Singh Professor, Department of Fruit Science, College of Horticulture, Banda University of Agriculture and Technology, Banda Author
  • Akhilesh Kumar Srivastava Professor, Department of Fruit Science, College of Horticulture, Banda University of Agriculture and Technology, Banda Author
  • Vishvajeet Singh Ph.D. Scholar,Department of Fruit Science, College of Horticulture, Banda University of Agriculture and Technology, Banda Author
  • Paramanand Prajapati Ph.D. Scholar,Department of Fruit Science, College of Horticulture, Banda University of Agriculture and Technology, Banda Author

DOI:

https://doi.org/10.48165/ijah.2024.6.1.2

Keywords:

Abiotic stress, metabolo mics, phytohormones, proteom ics, stress tolerance

Abstract

 

Abiotic stresses, including drought, salinity, extreme temperatures, and nutrient  deficiencies, pose significant challenges to global agriculture, threatening food  security and crop productivity. The metabolome, encompassing the complete set  of metabolites within an organism, plays a pivotal role in plant responses to such  stresses. Metabolomics, the large-scale study of metabolites, provides insights into  the biochemical pathways and mechanisms underlying stress tolerance. Plants  deploy complex metabolic reprogramming to mitigate stress effects, involving  osmoprotectants, antioxidants, phytohormones, and secondary metabolites. For  instance, compounds like proline, glycine betaine, and sugars act as osmolytes  to maintain cellular homeostasis, while antioxidants such as ascorbate and  glutathione mitigate oxidative damage. Stress-responsive phytohormones like  abscisic acid (ABA) regulate stomatal closure and activate downstream signaling  pathways. Furthermore, secondary metabolites, including flavonoids and alkaloids,  contribute to stress resistance by modulating growth and defense. Advancements  in metabolomics technologies, such as mass spectrometry and nuclear magnetic  resonance, enable comprehensive profiling of stress-induced metabolites, offering  opportunities to identify key biomarkers and pathways. These insights facilitate  targeted breeding and biotechnological interventions to develop stress-resilient  crops. Integrating metabolomics with genomics, transcriptomics, and proteomics  can provide a holistic understanding of stress tolerance mechanisms, paving the  way for sustainable agricultural practices. This study underscores the critical role  of the metabolome in enhancing crop resilience to abiotic stress and highlights the  potential of metabolomics in addressing global agricultural challenges through  precision breeding and metabolic engineering. 

Downloads

Download data is not yet available.

References

Abdelrahman, M., Hirata, S., Sawada, Y., Hirai, M.Y., Sato, S., Hi rakawa, H., Mine, Y., Tanaka K. and Shigyo, M. 2019. Widely targeted metabolome and transcriptome landscapes of Allium fistulosum–A. cepa chromosome addition lines revealed a fla vonoid hot spot on chromosome 5A. Sci. Rep., 9(1): 1–15.

Agarrwal, R., Bentur, J.S. and Nair S. 2014. Gas chromatography mass spectrometry based metabolic profiling reveals biomark ers involved in rice-gall midge interactions. J. Integr. Plant Biol., 56(9): 837–848.

Ahmad, P., Nabi, G. and Ashraf, M. 2011. Cadmium-induced oxi dative damage in mustard [Brassica juncea (L.) Czern. &Coss.] Plants can be alleviated by salicylic acid. S. Afr. J. Bot., 77: 36– 44. https://doi.org/10.1016/j.sajb.2010.05.003

Alla, M.M.N., Khedr, A.H.A., Serag, M.M., Abu-Alnaga, A.Z. and Nada, R.M. 2012. Regulation of metabolomics in Atriplex hali mus growth under salt and drought stress. Plant Growth Reg ul., 67: 281–304. https://doi.org/10.1007/s10725-012-9687-1

Andr´e, C. M., Schafleitner, R., Legay, S., Lef`evre, I., Aliaga, C. A. A., Nomberto, G., Hoffmann, L., Hausman, J.-F., Larondelle, Y. and Evers, D. 2009. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry, 70: 1107–1116.

Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F. and Ali, I. 2017. Drought induced changes in growth, osmolyte accu mulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci., 8.

Asensio, D., Rapparini, F. and Penuelas, J. 2012. AM fungi root col onization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress con ditions or after jasmonic acid application. Phytochemistry, 77: 149–161.

Awasthi, R., Bhandari, K. and Nayyar, H. 2015. Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci., 3: 1–24.

Bokszczanin, K.L. and Fragkostefanakis, S. 2013. Perspectives on deciphering mechanisms underlying plant heat stress re sponse and thermo tolerance. Front. Plant Sci., 4: 315. https:// doi.org/10.3389/fpls.2013.00315

Chandna, R., Azooz, M.M. and Ahmad, P. 2013. Recent advances of metabolomics to reveal plant response during salt stress. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (Eds.), Salt Stress in

Plants. Springer, New York, pp. 1–14.

Chaves, M.M., Maroco, J.P. and Pereira, J.S. 2003. Understand ing plant responses to drought from genes to the whole plant. Funct. Plant Biol., 30: 239–264.

Christ, B., Pluskal, T., Aubry, S. and Weng, J.K. 2018. Contribution of untargeted metabolomics for future assessment of biotech crops. Trends Plant Sci., 23(12):1047–1056.

Collino, S., Martin, F.P. and Rezzi, S. 2013. Clinical metabolom ics paves the way towards future healthcare strategies. Br. J. Clin. Pharmacol., 75:619–629. https://doi.org/10.1111/j.1365- 2125.2012.04216.x

Cusido, R.M., Onrubia, M., Sabater-Jara, A.B., Moyano, E., Bonfill, M. and Goossens, A. 2014. A rational approach to improving the biotechnological production of taxanes in plant cell cul tures of Taxus spp. Biotechnol. Advt., 32: 1157–1167. https:// doi.org/10.1016/j.biotechadv.2014.03.0

Davis, R., Earl, H. and Timper, P. 2014. Effect of simultaneous wa ter deficit stress and Meloidogyne incognita infection on cot ton yield and fiber quality. J. Nematol., 46: 108.

Delfine, S., Loreto, F., Pinelli, P., Tognetti, R. and Alvino, A. 2005. Isoprenoids content and photosynthetic limitations in rose mary and spearmint plants under water stress. Agric. Ecosyst. Environ., 106: 243–252.

Dhir, B., Sharmila, P. and Saradhi, P.P. 2004. Hydrophytes lack po tential to exhibit cadmium stress induced enhancement in lip id peroxidation and accumulation of proline. Aquat. Toxicol., 66:141–147. https://doi.org/10.1016/j.aquatox.2003.08.005

Dos, Santos., V.S. Macedo., F.A. do Vale, J.S., Silva, D.B. and Car ollo, C.A. 2017. Metabolomics as a tool for understanding the evolution of Tabebuiasensulato. Metabolomics, 13:72.

Dubery, I., Tugizimana, F., Piater, L. and Dubery, I. 2013. Plant me tabolomics: a new frontier in phytochemical analysis. S. Afr. J. Sci., 109: 1–11. https://doi.org/10.1590/sajs.2013/20120005

Fan, M., Jin, L. P., Huang, S. W., Xie, K. Y., Liu, Q. C. and Qu, D. Y. 2008. Effects of drought on gene expressions of key enzymes in carotenoid and flavonoid biosynthesis in potato. Acta Hor ticulturae Sinica, 35: 535.

Fraire-Velazquez, S. and Emmanuel, V. 2013. Abiotic stress in plants and metabolic responses. Abiotic Stress - Plant Re sponses. Appl. Agric., https://doi.org/10.5772/54859

Freund, D.M. and Hegeman, A.D. 2017. Recent advances in sta ble isotope-enabled mass spectrometry-based plant me tabolomics. Curr. Opin. Biotechnol., 43: 41–48. https://doi. org/10.1016/j.copbio.2016.08.002

Geng, D., Chen, P., Shen, X., Zhang, Y., Li, X., Jiang, L., Xie, Y., Niu, C., Zhang, J. and Huang, X. 2018. MdMYB88 and MdMYB124 enhance drought tolerance by modulating root vessels and cell walls in apple. Plant Physiol., 178: 1296–1309.

Genga, A., Mattana, M. and Coraggio, I. 2011. Plant Metabolo mics: a characterization of plant responses to abiotic stress es. Abiotic Stress Plants Mech. Adapt., 1–43. https://doi.

org/10.5772/23844

Grewal, H.S. 2010. Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agric. Water Manag., 97 (1): 148–156. https://doi.org/10.1016/j.ag

wat.2009.09.002

Griesser, M., Weingart, G., Schoedl-Hummel, K., Neumann, N., Becker, M., Varmuza, K., Liebner, F., Schuhmacher, R. and Forneck, A. 2015. Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir). Plant Physiol. Biochem., 88: 17–26.

Guo, X., Xin, Z., Yang, T., Ma, X., Zhang, Y., Wang, Z., Ren, Y. and Lin, T. 2020. Metabolomics response for drought stress tolerance in Chinese wheat genotypes (Triticum aes tivum). Plants, 9: 520.

Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R. and Fujita, M. 2013. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci., 14: 9643–9684.

Hatmi, S., Gruau, C., Trotel-Aziz, P., Villaume, S., Rabenoelina, F., Baillieul, F., Eullaffroy, P., Cl´ement, C., Ferchichi, A. and Aziz, A. 2015. Drought stress tolerance in grapevine involves activation of polyamine oxidation contributing to improved immune response and low susceptibility to Botrytis cinerea. J. Exp. Bot., 66: 775–787.

Hemantaranjan, A. 2104. Heat stress responses and thermo toler ance. Adv. Plants Agric. Res., 1: 1–10.

Hildebrandt, T. M. 2018. Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant Molecular Biology, 98: 121–135.

Hill, CB., Taylor, JD., Edwards, J., Mather, D., Langridge, P., Bacic, A. and Roessner, U. 2015. Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at ge netic loci that affect plant phenology. Plant Sci., 233:143–154.

Hochberg, U., Degu, A., Toubiana, D., Gendler, T., Nikoloski, Z., Rachmilevitch, S. and Fait, A. 2013. Metabolite profiling and network analysis reveal coordinated changes in grapevine wa ter stress response. BMC Plant Biol., 13: 184.

Hossain, M. S., Persicke, M., El-Sayed, A. I., Kalinowski, J. and Di etz, K. J. 2017. Metabolite profiling at the cellular and subcellu lar level reveals metabolites associated with salinity tolerance in sugar beet. Journal of Experimental Botany, 68: 5961–5976.

Jiang, W. and Liu, D. 2010. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol., 10: 1–40.

Kang, Z., Babar, A., Khan, N., Guo, J., Khan, J., Islam, S., Shrestha, S. and Shahi, D. 2019. Comparative metabolomic profiling in the roots and leaves in contrasting genotypes reveals complex mechanisms involved in post-anthesis drought tolerance in wheat. PLoS ONE, 14, e0213502.

Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke, N. and Guy, C.L. 2004. Exploring the Temperature-Stress Me tabolome of Arabidopsis. Plant Physiol., 136: 4

Kashem, M.A., Kawai, S., Kikuchi, N., Takahashi, H., Sugawara, R., and Singh, B.R. 2009. Effect of Lherzolite on chemical fractions of Cd and Zn and their uptake by plants in contaminated soil. Water. Air. Soil Pollut., 207: 241–251. https://doi.org/10.1007/

s11270-009-0132-7

Khakimov, B., Bak, S. and Engelsen, SB. 2014. High-throughput ce real metabolomics: current analytical technologies, challenges and perspectives. J. Cereal Sci., 59 (3):393–418.

Kim, H.K., Choi, Y.H. and Verpoorte, R. 2010. NMR-based metab olomic analysis of plants. Nat. Protoc., 5: 536–549. https://doi. org/10.1038/nprot.2009.237

Kim, T.W. and Wang, Z.Y. 2010. Brassinosteroid signal transduc tion from receptor kinases to transcription factors. Ann. Rev. Plant Biol., 61: 681–704. https://doi.org/10.1146/annurev.ar plant.043008.092057

Komal, T., Mustafa, M., and Kazi, A.G. 2014. Heavy metal induced adaptation strategies and repair mechanisms in plants. J. En docytobiosis Cell Res., 25, 33–41.

Kosmides, A.K., Kamisoglu, K., Calvano, S.E., Corbett, S.A. and Androulakis, I.P. 2013. Metabolomic fingerprinting: challeng es and opportunities. Crit. Rev. Biotechnol., 205–221.

Kumar, M., Kuzhiumparambil, U., Pernice, M., Jiang, Z. and Ralph Peter, J. 2016. Metabolomics: an emerging frontier of systems biology in marine macrophytes. Algal Res., 16: 76–92. https:// doi.org/10.1016/j.algal.2016.02.033

Kumari, A., Das, P., Parida, A.K. and Agarwal, P.K. 2015. Pro teomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci., 6:1–20. https://doi. org/10.3389/fpls.2015.00537.

Li, K., Wang, X., Pidatala, V.R., Chang, C.P. and Cao, X. 2014. Nov el quantitative metabolomic approach for the study of stress responses of plant root metabolism. J. Proteome Res., 13:5879– 5887. https://doi.org/10.1021/pr5007813

Li, X., Peng, T., Mu, L. and Hu, X. 2019. Phytotoxicity induced by engineered nanomaterials as explored by metabolomics: per spectives and challenges. Ecotoxicol. Environ. Saf., 184:109602

Liu, F., Xu, G., Wu, X., Ding, Q., Zheng, J., Zhang, R. and Gao, Y. 2014. Effect of drought stress and re-watering on emissions of volatile organic compounds from Rosmarinus officinalis. J. Zhejiang A&F Univ., 31: 264–271.

Lu, Y., Lam, H., Pi, E., Zhan, Q., Tsai, S. and Wang, C. 2013. Com parative metabolomics in Glycine max and Glycine soja un der salt stress to reveal the phenotypes of their offspring. J. Agric. Food Chem., 61: 8711–8721. https://doi.org/10.1021/ jf402043m

Manivasagaperumal, R., Balamurugan, S., Thiyagarajan, G. and Sekar, J. 2011. Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis

tetragonoloba (L.) Taub). Curr. Bot., 2:11–15.

Meng, F., Luo, Q., Wang, Q., Zhang, X., Qi, Z. and Xu, F. 2016. Physiological and proteomic responses of diploid and tetra ploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Sci. Rep., 14: 20299–20325. https://doi.org/10.3390

Munn´e-Bosch, S., Mueller, M., Schwarz, K. and Alegre, L. 2001. Diterpenes and antioxidative protection in drought-stressed Salvia officinalis plants. J. Plant Physiol., 158:1431–1437.

Naylor, A. W. and Morgan, P. W. 1974. Metabolism of proline and other amino acids during water stress. Plant Physiology, 53(6):929–935.

Nazar, R., Iqbal, N., Masood, A., Khan, M.I.R., Syeed, S. and Khan, N.A. 2012. Cadmium toxicity in plants and role of mineral nu trients in its alleviation. Am. J. Plant Sci., 3:1476–1489. https:// doi.org/10.4236/ajps.2012.310178

Negrão, S., Schmöckel, S.M. and Tester, M. 2017. Evaluating physi ological responses of plants to salinity stress. Ann. Bot., 119:1– 11. https://doi.org/10.1093/aob/mcw191

Nouri, J., Khoshgoftarmanesh, A. H. and Mardani, A. 2013. Lead toxicity on tomato (Solanum lycopersicum) plants and its effect on growth, physiological, and biochemical parameters. Envi ronmental Toxicology and Chemistry, 32(4):858-866.

Okkizgin, A. and Cokkizgin, H. 2015. Effects of lead (PbCl2) stress on germination of lentil (Lens culinaris Medic.) lines. Afr. J. Biotechnol., 9:8608–8612.

Piotrowska Niczyporuk, A., Bajguz, A., Zambrzycka, E. and Go dlewska Zylkiewicz, B. 2012. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol. Biochem., 52:52–65. https://doi.org/10.1016/j.plaphy. 2011.11.009

Rebey, I. B., Jabri-Karoui, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F. and Marzouk, B. 2012. Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Ind. Crop. Prod., 36:238–245.

Rivero, R. M., Mestre, T. C., Mittler, R., Rubio, F., Garcia-Sanchez, F. and Martinez, V. 2014. The combined effect of salinity and heat reveals a specific physiological, biochemical and molec ular response in tomato plants. Plant, Cell & Environment, 37:1059–1073.

Sanchez, D.H., Lippold, F., Redestig, H., Hannah, M.A., Erban, A. and Krämer, U. 2008. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicas. Plant J., 53:973–987.

Seki, M., Umezawa, T., Urano, K. and Shinozaki, K. 2007. Regu latory metabolic networks in drought stress responses. Curr. Opin. Plant Biol., 10:296–302. https://doi.org/10.1016/j. pbi.2007.04.014.

Shi, H. and Chan, Z. 2014. Improvement of plant abiotic stress tol erance through modulation of the polyamine pathway. J. Inte gr. Plant Biol., 56:114–121.

Shrivastava, G., Ownley, B. H., Aug´e, R. M., Toler, H., Dee, M.,

Vu, A., Kollner, T. G. and Chen, F. 2015. Colonization by ar buscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a her bivorous insect. Symbiosis, 65:65–74.

Sobhanian, H., Motamed, N., Jazii, F.R., Nakamura, T. and Komat su, S. 2010. Salt stress induced differential proteome and me tabolome response in the shoots of Aeluropus lagopoides (Po aceae), a halophyte C4 plant. J. Proteome Res., 9:2882–2897.

https://doi.org/10.1021/pr900974k

Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K. and Prasad, M.N.V. 2013. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant, 35:985–999. https://doi.org/10.1007/

s11738-012-1169-6

Szechynska-Hebda, M., Czarnocka, W., Hebda, M. and Karpinski, S. 2016. PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties. Plant Cell Rep., 35:527–539.

Székvári, P. 2011. Polyamines and their role in cold stress tolerance of plants. Acta Biologica Hungarica, 62(2):179-190. Templer, S.E., Ammon, A., Pscheidt, D., Ciobotea, O., Schuy, C., McCollum, C., Sonnewald, U., Hanemann, A., Förster, J., Or don, F. and von Korff, M. 2017. Metabolite profiling of bar ley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. J. Exp. Bot., 68 (7):1697–1713. Tschaplinski, T.J., Abraham, P., Jawdy, S.S., Gunter, L., Martin, M.Z., Engle, N.L., Yang, X. and Tuskan, G. 2019. The nature of the progression of drought stress drives differential metab olomic responses in Populus deltoides. Ann. Bot., 124:617–626. Urano, K., Maruyama, K., Ogata, Y., Morishita,Y., Takeda, M.,

Sakurai, N., Suzuki, H., Saito, K., Shibata, D. and Kobayashi, M. 2009. Characterization of the ABA-regulated global re sponses to dehydration in Arabidopsis by metabolomics. Plant J., 57:1065–1078.

Vallat, A., Gu, H. and Dorn, S. 2005. How rainfall, relative humid ity and temperature influence volatile emissions from apple trees in situ. Phytochemistry, 66:1540–1550.

Widodo, Patterson, J.H. Newbigin., E. Tester., M. Bacic, A. and Roessner, A. 2009. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which dif fer in salinity tolerance. J. Exp. Bot., 60, 4089–4103. https://doi. org/10.1093/jxb/erp243

Wolfender, J., Rudaz, S., Choi, Y.H. and Kim, H.K. 2013. Plant me tabolomics: from holistic data to relevant biomarkers. Curr. Med. Chem., 20:1056–1090.

Wu, D., Cai S., Chen M., Ye L., Chen Z. and Zhang H. 2013. Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One, 8. https://doi.org/10.1371/journal.pone.0055431

Zhang, J., Zhang Y., Du Y., Chen S. and Tang H. 2011. Dynam ic metabolomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J. Proteome Res., 10:1904–1914. https:// doi.org/10.1021/pr101140n

Zhang, N., Liu, B., Ma, C., Zhang, G., Chang, J., Si, H. and Wang, D. 2014. Transcriptome characterization and sequencing-based identification of drought-responsive genes in potato. Mol. Biol. Rep., 41:505–517.

Zhao, X., Wang, W., Zhang, F., Deng, J., Li, Z. and Fu, B. 2014. Comparative metabolite profiling of two rice genotypes with contrasting salt stress tolerance at the seedling stage. PLoS One, 9:1–7. https://doi.org/10.1371/journal.pone.0108020

Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke, N. and Guy, C.L. 2004. Exploring the Temperature-Stress Me tabolome of Arabidopsis. Plant Physiol., 136: 4

Kashem, M.A., Kawai, S., Kikuchi, N., Takahashi, H., Sugawara, R., and Singh, B.R. 2009. Effect of Lherzolite on chemical fractions of Cd and Zn and their uptake by plants in contaminated soil. Water. Air. Soil Pollut., 207: 241–251. https://doi.org/10.1007/

s11270-009-0132-7

Khakimov, B., Bak, S. and Engelsen, SB. 2014. High-throughput ce real metabolomics: current analytical technologies, challenges and perspectives. J. Cereal Sci., 59 (3):393–418.

Kim, H.K., Choi, Y.H. and Verpoorte, R. 2010. NMR-based metab olomic analysis of plants. Nat. Protoc., 5: 536–549. https://doi. org/10.1038/nprot.2009.237

Kim, T.W. and Wang, Z.Y. 2010. Brassinosteroid signal transduc tion from receptor kinases to transcription factors. Ann. Rev. Plant Biol., 61: 681–704. https://doi.org/10.1146/annurev.ar plant.043008.092057

Komal, T., Mustafa, M., and Kazi, A.G. 2014. Heavy metal induced adaptation strategies and repair mechanisms in plants. J. En docytobiosis Cell Res., 25, 33–41.

Kosmides, A.K., Kamisoglu, K., Calvano, S.E., Corbett, S.A. and Androulakis, I.P. 2013. Metabolomic fingerprinting: challeng es and opportunities. Crit. Rev. Biotechnol., 205–221.

Kumar, M., Kuzhiumparambil, U., Pernice, M., Jiang, Z. and Ralph Peter, J. 2016. Metabolomics: an emerging frontier of systems biology in marine macrophytes. Algal Res., 16: 76–92. https:// doi.org/10.1016/j.algal.2016.02.033

Kumari, A., Das, P., Parida, A.K. and Agarwal, P.K. 2015. Pro teomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci., 6:1–20. https://doi. org/10.3389/fpls.2015.00537.

Li, K., Wang, X., Pidatala, V.R., Chang, C.P. and Cao, X. 2014. Nov el quantitative metabolomic approach for the study of stress responses of plant root metabolism. J. Proteome Res., 13:5879– 5887. https://doi.org/10.1021/pr5007813

Li, X., Peng, T., Mu, L. and Hu, X. 2019. Phytotoxicity induced by engineered nanomaterials as explored by metabolomics: per spectives and challenges. Ecotoxicol. Environ. Saf., 184:109602

Liu, F., Xu, G., Wu, X., Ding, Q., Zheng, J., Zhang, R. and Gao, Y. 2014. Effect of drought stress and re-watering on emissions of volatile organic compounds from Rosmarinus officinalis. J. Zhejiang A&F Univ., 31: 264–271.

Lu, Y., Lam, H., Pi, E., Zhan, Q., Tsai, S. and Wang, C. 2013. Com parative metabolomics in Glycine max and Glycine soja un der salt stress to reveal the phenotypes of their offspring. J. Agric. Food Chem., 61: 8711–8721. https://doi.org/10.1021/ jf402043m

Manivasagaperumal, R., Balamurugan, S., Thiyagarajan, G. and Sekar, J. 2011. Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis

tetragonoloba (L.) Taub). Curr. Bot., 2:11–15.

Meng, F., Luo, Q., Wang, Q., Zhang, X., Qi, Z. and Xu, F. 2016. Physiological and proteomic responses of diploid and tetra ploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Sci. Rep., 14: 20299–20325. https://doi.org/10.3390

Munn´e-Bosch, S., Mueller, M., Schwarz, K. and Alegre, L. 2001. Diterpenes and antioxidative protection in drought-stressed Salvia officinalis plants. J. Plant Physiol., 158:1431–1437.

Naylor, A. W. and Morgan, P. W. 1974. Metabolism of proline and other amino acids during water stress. Plant Physiology, 53(6):929–935.

Nazar, R., Iqbal, N., Masood, A., Khan, M.I.R., Syeed, S. and Khan, N.A. 2012. Cadmium toxicity in plants and role of mineral nu trients in its alleviation. Am. J. Plant Sci., 3:1476–1489. https:// doi.org/10.4236/ajps.2012.310178

Negrão, S., Schmöckel, S.M. and Tester, M. 2017. Evaluating physi ological responses of plants to salinity stress. Ann. Bot., 119:1– 11. https://doi.org/10.1093/aob/mcw191

Nouri, J., Khoshgoftarmanesh, A. H. and Mardani, A. 2013. Lead toxicity on tomato (Solanum lycopersicum) plants and its effect on growth, physiological, and biochemical parameters. Envi ronmental Toxicology and Chemistry, 32(4):858-866.

Okkizgin, A. and Cokkizgin, H. 2015. Effects of lead (PbCl2) stress on germination of lentil (Lens culinaris Medic.) lines. Afr. J. Biotechnol., 9:8608–8612.

Piotrowska Niczyporuk, A., Bajguz, A., Zambrzycka, E. and Go dlewska Zylkiewicz, B. 2012. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol. Biochem., 52:52–65. https://doi.org/10.1016/j.plaphy. 2011.11.009

Rebey, I. B., Jabri-Karoui, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F. and Marzouk, B. 2012. Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Ind. Crop. Prod., 36:238–245.

Rivero, R. M., Mestre, T. C., Mittler, R., Rubio, F., Garcia-Sanchez, F. and Martinez, V. 2014. The combined effect of salinity and heat reveals a specific physiological, biochemical and molec ular response in tomato plants. Plant, Cell & Environment, 37:1059–1073.

Sanchez, D.H., Lippold, F., Redestig, H., Hannah, M.A., Erban, A. and Krämer, U. 2008. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicas. Plant J., 53:973–987.

Seki, M., Umezawa, T., Urano, K. and Shinozaki, K. 2007. Regu latory metabolic networks in drought stress responses. Curr. Opin. Plant Biol., 10:296–302. https://doi.org/10.1016/j. pbi.2007.04.014.

Shi, H. and Chan, Z. 2014. Improvement of plant abiotic stress tol erance through modulation of the polyamine pathway. J. Inte gr. Plant Biol., 56:114–121.

Shrivastava, G., Ownley, B. H., Aug´e, R. M., Toler, H., Dee, M.,

Downloads

Published

2025-01-30

How to Cite

Role of metabolome in enhancing crop resilience to abiotic stress in  horticultural crops-A review. (2025). Indian Journal of Arid Horticulture, 6(1), 11–19. https://doi.org/10.48165/ijah.2024.6.1.2