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 

 
Abstract—The choice of the global analysis method of 

a steel structure is essentially related to its sensitivity to 
second order effects. This sensitivity depends on the 
structural strength to the lateral displacement’s. The 
classification of structure as "flexible structure" or 
"rigid structure" allows choosing the required method 
of analysis for the latter. From a regulatory point of 
view, a structure can be classified as rigid, if the ratio of 
the value of elastic critical load for the instability into 
the sway mode to the value of design vertical load is 
greater than ten. In practice, the calculation of the 
elastic total vertical load is not easy. For this reason, 
studies have been made in this field and have 
accomplished the proposal of simple expressions 
computing as an alternative to the direct determination 
of the critical elastic load of the structure. The main 
objective of this work is to explore these alternative 
methods in order to extend the study in this field and to 
evaluate their robustness and the results of its 
application on different types of structures. 
 

Index Terms— Buckling, Critical load, Global 
analysis method, Instability, Second order effects 
 

I. INTRODUCTION 
Internal forces in steel structures can generally be 

determined using one of the two following analytical 
methods: 

 First order global analysis method, referring to the 
initial geometry of the structure. 

 Second order global analysis method, taking into 
consideration the influence of structure’s 
deformation. 

The choice of the global analysis method is essentially 
related to the sensitivity of the structure to the second order  
effects under a given load. This sensitivity depends on  
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structural strength to the lateral displacement. 
All structures must have sufficient rigidity in order to limit 
the lateral deformation. In unbraced structures some beam 
to column connections must be moment resisting in order to 
transmit horizontal forces to the foundations and to provide 
frame stability. The classification of this type of structures 
into: 

 flexible structure; 
 rigid structure; 

allows choosing the global analysis method required for 
this structure. 

A structure can be classified as rigid structure if its 
response to the horizontal loads in the plan is sufficiently 
rigid that we can with acceptable accuracy, neglect the 
additional stresses generated by taking into account the 
horizontal movement of its nodes. Otherwise, the structure 
must be classified as flexible and the effects of horizontal 
displacement of its nodes must be taken into account in its 
calculation. 

In CCM97 Regulations [1] and Eurocode 3 [2], the 
effects of the geometry’s deformation of the structure is 
estimated by calculating the αcr factor (usually called elastic 
critical multiplier), defined as: 

Edcrcr FF                 (1) 

Fcr : is the elastic critical load of instability in a global 
mode, based on the initial elastic rigidities, 
FEd : is the calculation’s load applied to the structure. 
Provided the framework is sufficiently rigid, the second 
order effects may be ignored and a first order analysis can 
be performed. From a regulatory perspective (CCM97, 
Eurocode 3), it is the case if: 

 for an elastic analysis: αcr ≥ 10, 
 for a plastic analysis: αcr ≥ 15. 

II. THEORY AND EVALUATION METHODS OF THE 
ELASTIC CRITICAL LOAD 

The elastic critical load for calculating the αcr factor can be 
determined by several processes:  

 Analytical evaluation. 
 Numerical calculation. 
 Approximate methods. 
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A. Analytical evaluation 
Analytical methods consist of a direct solution of the 

differential equilibrium equations, in order to satisfy the 
boundary conditions [3,4,5,6,7]. These methods have many 
difficulties and can only be carried out for simple buckling 
problems, for structures of which the freedom degrees 
number is low [. 

B. Numerical calculation 
The critical load value that can likely buckle the 

compressive elements of the structure can be determined 
using numerical methods. This approach consists of 
resolving the problem of the eigen values, in a manner 
similar to the resolution of a modal analysis [8]. The 
difference from the modal case lies in the type of the matrix 
that is taken into consideration. 

For buckling analysis, the calculation is done taking into 
account the classical elasticity matrix of the structure [K] 
and integrating the geometrical stiffness matrix [Kg]. The 
geometrical stiffness matrix contains terms that are 
function of stress state value in the elements. 

By integrating these two matrices, the equation to be 
solved is the following: 

       FuKK g                (2) 

With: 
{u} : displacements vector of the structure, 
{F} : vector of external forces. 
Integrating in the calculation of the geometrical stiffness 
matrix, the stiffness terms of the two matrix may be in 
opposition. Taking the example of a bending beam, this 
beam would have a lower stiffness if it is initially 
compressed and higher if it was tense. This example 
highlights the philosophy of generalized buckling method 
where we search the αcr coefficient, which; multiplied by 
the load, cancels the structure’s rigidity. So we are led to 
solve the following equation: 

      0det  gcr KK              

 (3) 

Thus, in this analysis it is to determine the critical 
amplification coefficient αcr which applied to the initial 
loading of the structure leads to buckling. 

C. Approximate methods 
The approximate methods have been proposed as an 

alternative to the direct determination of the critical load of 
the structure [9,10,11,12]. 

Among those methods we can mention that of Wood [12] 
which is also known as the method of Merchant - Rankine - 
Wood. This method was developed in order to estimate the 
buckling length of compressed elements of plane frames, in 
the case of buckling in a sway mode rather than of buckling 
in a non-sway mode. According to this method the ratio of 
the buckling length (Le) and the real length of a column is 
determined based on the distribution factors η1 and η2 
obtained by considering the stiffness of the adjacent bars to 

the nodes of this column. For each column of the structure, 
we first calculate the critical load of the elastic buckling, 
using the expression: 

22
ecr LEIN                  (4) 

The αcr factor is obtained by comparing the critical load to 
the value of the computational load NEd applied to this 
column: 

Edcrcr NN                 (5) 

This process must be repeated for all columns of the 
structure in order to find the smallest αcr factor which will 
be that of the structure. 
Another approximate method which was adopted by 
CCM97 Regulations and Eurocode 3 is that of Horne 
[9,10,11]. 
Horne method is applicable to plane frame and for one 
storey frame with a low sleeper’s slope (≤26°). These frame 
are not braced and their sleepers should be loaded with low 
axial loads. This method consists of calculating for each 
level the αcr factor by the expression: 


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HEd is the total horizontal reaction at the bottom of the 
storey; 
VEd is the total vertical reaction at the bottom of the storey; 
H,Ed is the horizontal displacement at the top of the storey 
compared to its lower part; 
hi is the height of the storey. 
In this case also, the smallest αcr factor will be that of the 
structure. 

III. COMPARATIVE STUDY ON THE ELASTIC CRITICAL 
MULTIPLIER 

The present study consists of preceding a numerical 
experiment in order to compare the elastic critical 
multiplier αcr through two approaches. The first approach is 
based on a numerical analysis via a numerical program 
which is based on solving a problem of eigen values 
considering the matrix of classical stiffness of a beam 
element and associating it with the geometrical stiffness 
matrix . The second approach is to use the approximate 
method of Horne since it was adopted by the regulation. 
This method is applicable when the structure responds at 
certain topologies criteria, frequently satisfied for usual 
structures of building. 

The benefit of this comparative study is to evaluate the 
robustness of the regulatory approximation method and the 
results of its application on different types of structures. 

For this study, we consider several frames composed of 
HEB260 columns, and IPE400 beams for sleepers, 
subjected to different cases of vertical and horizontal loads. 
For these structures, we take different boundary conditions 
at base supports (recessed, articulated) and two storey 
heights (5m and 10m). For frames with a single level, we 
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consider several slope values of the sleeper  (0°, 10°, 20°, 
25°, 30° and 40°). 

A. Analysis of one storey frames without inclination of 
the sleeper 

In this case, the structures under study corresponds to one 
storey frames without inclination of the beam recessed at 
base supports and then articulated at base supports. In a first 
step, it was taken a column height of h = 5m. The results of 
both approaches to calculate αcr factor are shown in the 
following figures: 

 
 
Fig 1: Results of the case of a one storey plane frame 

recessed at base supports with h = 5m 
 

 
 

Fig 2: Results of the case of a one storey plane frame 
articulated at base supports with h = 5m 

 
The value of the vertical load was selected to obtain 
numerically a value of the αcr factor near to 10. 

In a second step, a column height of h = 10m has been 
considered with the same boundary conditions considered 
in the first step. The results of both approaches for 
calculating the αcr factor are shown in the following figures: 
 

 
 

Fig 3: Results of the case of a one storey plane frame 
recessed at base supports with h = 10m 

 
 

 
 

Fig 4: Results of the case of a one storey plane frame 
articulated at base supports with h = 10m 

 
In each studied case, the value of the vertical load was kept 
constant by varying that of the horizontal load. The 
obtained results show that the numerical values of the αcr 
factor remain substantially constant for each studied case 
which is not the case for values given by the regulatory 
approach. The most significant differences were obtained in 
the case of a right frame recessed at base supports for h = 
5m. It was also found that the lowest values given by the 
regulatory approach were obtained for low values of the 
horizontal load. 

B. Analysis of one storey frames with inclination of the 
sleeper 
The studied frames in the previous step were also 

analyzed in regard to various slope values of the sleeper 
(10°, 20°, 25°, 30° and 40°). 
In the case of a recessed supports frame with a sleeper of a 
slope ( = 20°) and columns of 5m height, results of the two 
approaches in order to calculate the αcr factor are shown in 
following figure: 
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Fig 5: Case of a one storey frame with inclination of the 
beam recessed at base supports with h = 5m 

 
The results of other studied cases are summarized in the 
tables below. 
 
Table 1: Results of the study of structures with inclination 

of the beam: case with h = 5m 

 Slope of the 

sleeper 

H = 5 kN H = 50 kN 

 cr num cr app cr num cr app 

R
ec

es
se

d 

 = 0°; 
(V = 160 kN/m) 10,49 7,73 10,46 11,05 

 = 10°;  
(V = 80 kN/m) 20,20 2,53 20,10 14,20 

 = 20°;  
(V = 40 kN/m) 37,09 5,93 36,74 32,16 

 = 25°; 
(V = 35 kN/m) 40,01 7,00 39,60 37,94 

 = 30°; 
(V = 30 kN/m) 43,42 8,35 42,92 45,27 

 = 40°; 
(V = 20 kN/m) 53,37 6,00 52,49 78,59 

A
rti

cu
la

te
d 

 = 0°;  
(V = 40 kN/m) 10,23 10,02 10,20 10,93 

 = 10°;  
(V = 35 kN/m) 11,39 6,09 11,35 12,77 

 = 20°; 
(V = 37 kN/m) 10,11 4,16 10,07 11,88 

 = 25°;  
(V = 35 kN/m) 10,14 3,95 10,10 12,47 

 = 30°;  
(V = 32 kN/m) 10,38 4,08 10,33 13,62 

 = 40°;  
(V = 27 kN/m) 10,25 4,14 10,20 15,53 

 
Table 2: Results of the study of structures with inclination 

of the beam: case with h = 10m 

 Slope of the 

sleeper 

H = 5 kN H = 50 kN 

 cr num cr app cr num cr app 

R
ec

es
se

d 

 = 0°;  
(V = 45 kN/m) 10,95 11,70 10,93 12,24 

 = 10°;  
(V = 45 kN/m) 10,74 5,64 10,72 11,64 

 = 20°;  
(V = 45 kN/m) 10,15 3,78 10,13 10,85 

 = 25°;  10,88 3,88 10,86 11,90 

(V = 40 kN/m) 
 = 30°;  

(V = 40 kN/m) 10,30 3,22 10,27 11,20 

 = 40°;  
(V = 35 kN/m) 10,06 2,82 10,03 11,46 

A
rti

cu
la

te
d 

 = 0°;  
(V = 10 kN/m) 10,94 11,45 10,82 11,38 

 = 10°;  
(V = 10 kN/m) 10,75 11,32 10,60 12,09 

 = 20°;  
(V = 10 kN/m) 10,19 10,69 10,00 12,40 

 = 25°;  
(V = 9 kN/m) 10,71 11,49 10,45 13,50 

 = 30°;  
(V = 8 kN/m) 11,25 12,12 10,88 14,74 

 = 40°;  
(V = 7 kN/m) 10,91 12,01 10,42 15,73 

The observations made for a frame without inclination of 
the beam remain valid in this case, we always note that the 
numerical values of αcr factor remain substantially constant 
for each studied case which is not the case for the values 
given by the regulatory approach. The differences observed 
between the two approaches for low values of the horizontal 
load become even more pronounced with the increase in the 
slope of the sleeper. 

C. Analysis of multi storey frames 
In order to complete this numerical experiment, we have 

also analyzed structures of seven levels considering storey 
heights of 5m then 10m. Each structure was studied in both 
cases recessed and articulated at base supports. 
The figure below shows the results for the structure recessed 
at base supports with storey heights of 10m. 
 

 
 
Fig 6: Results for structure with 7 levels recessed at base 

supports with h = 10m 
 
The results of the other studied cases are given in the table 
below.  
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Table 3: Results of the study of multi storey frames 

 
Le

ve
ls

 
H=5 kN 

 Recessed Articulated 

 

V
(k

N
/m

) 


cr

 n
um

 


cr

 a
pp

 

V
(k

N
/m

) 


cr

 n
um

 


cr

 a
pp

 

h 
= 

5 
m

 

1 12 10,19 12,57 3 10,55 10,29 
2 12 10,19 8,97 3 10,55 24,46 
3 12 10,19 10,47 3 10,55 32,61 
4 12 10,19 15,71 3 10,55 39,13 
5 12 10,19 15,71 3 10,55 48,92 
6 12 10,19 31,42 3 10,55 65,22 
7 12 10,19 31,42 3 10,55 195,69 

h 
= 

10
 m

 

1 2,5 10,32 11,56 1 4,54 4,68 
2 2,5 10,32 10,04 1 4,54 13,21 
3 2,5 10,32 11,92 1 4,54 17,61 
4 2,5 10,32 14,68 1 4,54 22,36 
5 2,5 10,32 19,08 1 4,54 29,07 
6 2,5 10,32 29,36 1 4,54 44,72 
7 2,5 10,32 54,52 1 4,54 83,05 

 
These results show that the numerical values are identical 
for each level. The values given by the approximate method 
are very different from one level to another; however the 
lowest given value is close to that found numerically for the 
same studied case. 

IV. CONCLUSION 
In this study, we have analyzed several plane frames 

vertically as well as horizontally loaded. The differences 
between the structures were achieved by varying: 

1. the boundary conditions at the base of the structure 
(recessed, articulated); 

2. the level heights (h = 5m, h = 10m); 
3. the number of levels; 
4. the value of the sleeper’s slope  ( 0°, 10°, 20°, 25°, 

30° and 40°). 
The analysis was made considering a numerical approach 
as well as the regulatory approach based on an approximate 
method. 
For each studied case, the vertical load value was kept 
constant by taking several values of the horizontal load. The 
values of the elastic critical multiplier αcr given by the 
numerical approach were practically the same as the 
horizontal load varies; by contrast those given by the 
approximate method vary along the horizontal load. 
The importance of the variation in the approximate values 
depends on the studied structure. In the case of one storey 
frame, this variation is greater when: 

1. the structure is recessed at base supports; 
2. the height of the columns is smaller (h = 5 m); 
3. the slope of the sleeper increases. 

The values of the elastic critical multiplier αcr given by the 
approximate method for multi storey structures are close to 
those found numerically. 

This study should be continued and extended to other 
aspects that may influence the stability of frameworks. 

Among these aspects we can mention: 
1. Taking account of different relationships between 

the rigidities of beams and columns of the 
structure. 

2. The consideration of structures at several levels 
with different storey heights in the same structure. 

3. The consideration of structures with different beam 
lengths in the same structure. 

4. Consideration of the semi- rigid nodes 
“beam-column”. 

The study of these aspects will allow suggesting corrections 
for the approximate method considered in this study 
leading to satisfactory results. 

REFERENCES 
[1] Centre national de recherche appliquée en génie 

parasismique, “Règles de conception et de calcul des 
structures en acier”, CCM97, 1997 

[2] European Committee of Standardization, “EUROCODE 3: 
Design of steel structures, Part 1-1, General rules and rules of 
buildings”, CEN, 2005. 

[3] S.P. Timoshenko, and J.M Gere “Theory of Elastic 
Stability”, 2E, McGraw-Hill, New York, 1961. 

[4] T.V. Galambos, and A.E. Surovek, “Structural stability of 
steel: Concepts and applications for structural engineers”, 
John Wiley  Sons, USA, 2008. 

[5] C.J. Gantes, G.E. Mageirou “Improved stiffness distribution 
factors for evaluation of effective buckling lengths in 
multi-story sway frames ” J Eng Struct 2005; 27(7): 1113–24 

[6] G.E. Mageirou, C.J. Gantes, “Buckling strength of 
multi-story sway, non-sway and partially sway frames with 
semi-rigid connections”, J Constr Steel Res 2006;62: 
893–905 

[7] J. Hellesland “Evaluation of effective length formulas and 
applications in system instability analysis”, J Eng Struct 
2012; 45: 405–420 

[8] W. McGuire, R.H. Gallagher and R.D. Ziemian “Matrix 
Structural Analysis”, 2nd ed., John Wiley &Sons, New York, 
NY, USA, 2000. 

[9] M.R. Horne “An approximate method for calculating the 
elastic critical loads of multistory plane frames”, Structural 
Engineer, 1975, 53(6),242-8. 

[10] M.R. Horne, and W. Merchant “The stability of frames”, 
Pergamon Press Ltd, Oxford, 1968. 

[11] W. Merchant, “Critical loads of tall buildings frames”, 
Structural Engineer, 1955, 33,85. 

[12] R.H. Wood “Effective Lengths of Columns in Multi-Storey 
Buildings”, The Struct. Eng., Vol. 52, 7, 1974, p. 341–346. 

 
 
 
 
A. Slimani Ph.D. student Faculty of Civil Engineering, 

University of Sciences and Technology Houari Boumediene, 
Algiers, Algeria. 
 F. Ammari HDR Doctor Faculty of Civil Engineering, 
University of Sciences and Technology Houari Boumediene, 
Algiers, Algeria. 

R. Adman HDR Doctor Faculty of Civil Engineering, 
University of Sciences and Technology Houari Boumediene, 
Algiers, Algeria. 

 


