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 
Abstract—This paper is concerned with the global 

exponential stability(GES) and stabilization of 
fractional-order positive switched systems(FOPSS) with 
average dwell time(ADT). Firstly, the the concept of 
GES is extended to FOPSS. Then, by constructing 
copositive Lyapunov functions and using ADT 
approach, a state feedback controller is constructed, 
and sufficient conditions are derived to guarantee that 
the corresponding closed-loop system is globally 
exponentially stable. Such conditions can be easily 
solved by linear programming. Finally, an example is 
given to demonstrate the effectiveness of the proposed 
method. 

Index Terms—fractional-order positive switched 
systems, global exponential stability, average dwell 
time, linear programming.  
 

I. INTRODUCTION 
Positive switched systems are a class of hybrid systems 

consisting of a family of positive subsystems and a 
switching law that specifies which subsystem will be 
activated along the system trajectory at each instant of time. 
Many remarkable results related to positive switched 
systems have been presented, see [1-6] and references 
therein. These results mentioned above refer to the positive 
switched systems with integer order derivative. In recent 
years, fracti- onal order systems have received much 
attention. This class of systems has been found many 
applications in the fields such as fractional-order biological 
system[7], fractional electrical networks[8-9], robotics[10], 
fractional- order Ch- uas circuit[11] and so on, fractional 
calculus is more feasible than integer calculations to model 
the behavior of such systems There have been many 
interesting results on fractional order systems. In [12,13], 
necessary and sufficient conditions for stability of fractional 
order systems were obt- ained by virtue of linear matrix  
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inequalities. [14] considered the robust stability and 
stabilization of fractional-order linear systems with 
polytopic uncertainties.  A method on finding an equivalent 
ordinary system of a fractional order system with order 
between 1 and 2 was proposed in [15]. 

Recently, some researchers have investigated the 
fractional-order positive systems[16-18] or fractional-order 
switched systems[19,20]. Only a few results about 
fractional-order positive switched systems have been 
presented[21-23]. [21] considered the controllability of 
FOPSS for fixed switching sequence. [22] considered the 
the problem of state-dependent switching control of 
FOPSS. [23] considered the guaranteed cost finite-time 
control of fractional-order positive switched systems. 
However, to the best of our knowledge, there is no result on 
the control problem of GES and stabilization for FOPSS 
with ADT, which motivates our study. 

Motivated by the above discussions, in this paper, we are 
interested in investigating the problem of GES of FOPSS 
with ADT. Firstly, definition of GES is extended to FOPSS. 
Secondly, by using copositive type Lyapunov function and 
ADT approach, a static output feedback controller is 
designed. Thirdly, Some sufficient conditions are obtained 
to guarantee the corresponding closed-loop system is 
globally exponentially stable. Such conditions can be easily 
solved by linear programming. The paper is organized as 
follows. In Section 2, problem statements and necessary 
lemmas are given. UGES analysis and controller design are 
developed in Section 3. An numerical example is provided 
in Section 4. Finally, Section 5 concludes this paper. 

Notations. Throughout this paper, 0A  ( 0 , 0 , 

0° 0 ) means that 0ija  ( 0 , 0 , 0 ), which is 

applicable to a vector. A B ( A B ) means that 
0A B  ( 0A B  ); R is the n-dimensional  vector 

space, the n-dimensional Euclidean space is denoted 
by nR ,  n nR   represents the space of n n  matrices 
with real entries. For a vector 1 2( , , , )T

nx x x x  , its 

1-norm is given by 1 1

n
kk

x x


 , 1( ,x x
 

2 , , )T
nx x , where kx  is the k th element of the 

vector x . TA is the transpose of matrix A . Matrices are 
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assumed to have compatible dimensions for calculating if 
their dimensions are not explicitly stated. 

II. PRELIMINARIES AND PROBLEM STATEMENTS 

A. Fractional-order calculus 
Fractional-order integro-differential operator is the 

generalization of integer order integro-differential 
operator. There are different definitions of the 
fractional-order integral or derivative. Given, 0 1  , 
the uniform formula of a fractional integral is defined as 

0
0

1

1 ( )( ) ,
( ) ( )

t

t t t

fD f t d
t







 



                  (1) 

where ( ) denotes the Gamma function with 

non-integer arguments. For 0 1  , the 
Riemann-Liouville (RL) definition of fractional derivative 
is given as 

0
0

1 ( )( ) ,
(1 ) ( )

tRL
t t t

d fD f t d
dt t







 

              (2) 

and Caputo definition of fractional derivative is given as 

0
0

'1 ( )( ) ,
(1 ) ( )

tC
t t t

fD f t d
t




 
 


                (3) 

where ( )f t  is an arbitrary integrable function, 
0t tD   is 

the fractional integral of order   on 0[ , ]t t , 

1

0
( ) te t dt

     ,
0

RL
t tD and

0

C
t tD represent Riema- 

nn-Liouville and Caputo fractional derivatives of order  
 of ( )f t  on 0[ , ]t t , respectively. We mainly use these 
two fractional-order operators in this paper. From the above 
two definitions, we can obtain the following relation 
between them: 

0 0 0( ) ( ) ( ).
(1 )

RL C
t t t t

tD f t D f t f t


 





 
 

         (4) 

Lemma 1 [23]. Let (0,1)  , if (0) 0f  , then 

0 0
( ) ( )RL C

t t t tD f t D f t  . 

B. Fractional-order positive switched systems 
Consider the following FOPSS: 

0 ( ) ( )( ) ( ) ( ),C
t t t tD x t A x t B u t

                 (5) 

where ( ) nx t R  is the system state, ( ) mu t R  

represent the control input. 
0

C
t tD  denotes Caputo 

fractional-order derivative. 
( ) :t [0, ) {1, 2, , }S S     is the switching 

signal. S  is the number of subsystems; p S  , pA  and 

pB  are constant matrices with appropriate dimensions, p  

denotes the pth systems and qt  denotes the qth switching 

instant. 
Next, we will present some definitions, lemmas and 
inequalities for the FOPSS (5) for our further study. 
Definition 1 [6]. The system (5) is said to be positive if for 

any switching signals ( )t , any initial conditions 

0( ) 0x t  , the corresponding trajectory satisfies 

( ) 0x t   for all 0t  . 

Definition 2 [6]. A matrix A  is called a Metzler matrix if 
the off-diagonal entries of matrix A  are non-negative. 
Lemma 2 [1]. A matrix is a Metzler matrix if and only if 
there exists a positive constant   such that 0nA I  . 

Definition 3 [23]. For any switching signals ( )t  and any 

2 1 0T T  , let ( ) 1 2( , )tN T T  denote the switching 

numbers of ( )t  over the interval 1 2[ , )T T . If there exist 

0 0N   and 0T   such that 

2 1
( ) 1 2 0( , )t

T TN T T N
T



                  (6) 

then T  and 0N  are called ADT and chattering bound, 

respectively. Generally speaking, we choose 0 0N   in 
this paper. 
Lemma 3 [22]. The system (5) is positive if and only if pA , 

p S   are Metzler matrices and p S  , 0pB  . 

Definition 4 [1]. If there exist positive constants 1 0   

and 2 0   such that the state response satisfies 
2 0( )

1 01 1
( ) ( )t tx t e x t   , 0t t   with arbitrary 

nonnegative initial conditions, then system (5) is uniformly 
globally exponentially stable under a proper switching 
signal. 

C. Some inequalities 
The following inequalities are necessary for our further 

study. 
Lemma 5. (Gronwall-bellman inequality) Let ( )a t , ( )b t  

and ( )g t  be continuous real-valued functions.  If ( )a t  is 

non-negative and if ( )g t  satisfies the integral inequality 

0
( ) ( ) ( ) ( ) ,

t
g t a t b s g s ds    

then 

0
( ) ( ) ( ) ( )exp( ( ) ) .

t t

s
g t a t b s b s b r dr ds     

If, in addition, ( )a t  is a constant, then 

0
( ) ( ) exp( ( ) ).

t
g t a t b s ds    

Lemma 6. ( pC inequality) For 0 1   and any 

positive real numbers 1x , 2x ,  , kx , 

1

1 1
( ) .

n n

k k
k k

x n x  

 

   

Lemma 7. (Young's inequality) If a and b are 
nonnegative real numbers and p  and q  are positive real 

numbers such that 1 1 1p q  , then 
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.
p qa bab

p q
   

The aim of this paper is to design a state feedback 
controller ( )( ) ( )tu t K x t  and a class of switching 

signals ( )t  for FOPSS (5) such that the corresponding 
closed-loop system is uniformly globally exponentially 
stable. 

III. MAIN RESULTS 
A. Global exponential stability analysis 
In this subsection, we will focus on the problem of GES 

for FOPSS (5) with ( ) 0u t  . 

Theorem 1. Consider the system (5) with ( ) 0u t  . Given 
positive constants  ,  , if there exist positive vectors 

pv , p S , such that the following inequalities hold: 
T
p p p pA v v                                (7) 

p qv v
                                   

(8) 

where p S  , pv  [ 1pv , 2pv ,  , pnv ],  1  , the 

FOPSS (5) is globally exponentially stable with the ADT 
scheme 

* ( 1) lnT T 
 


 
 

                    
(9) 

Proof. Constructing the multiple linear type Lyapunov- 
Krasovskii functional for the system (5) as follows: 

( ) ( )( , ( )) ( )T
t tV t x t x t v 

                 
(10) 

where n
pv R , p S  . 

Denote 0t , 1t ,  as the switching instants over the 

interval [0, ]fT . When 1[ , )k kt t t  , along the trajectory 

of the system (5) with ( ) 0u t  , we have 

0 ( ) ( ) ( )( , ( )) ( )C T T
t t t t tD V t x t x t A v

  
         

(11) 

From (7) and (11), we have 

0 ( ) ( ) ( )

( ) ( )

( , ( )) ( )

( ) ( , ( ))

C T T
t t t t t

T
t t

D V t x t x t A v

x t v V t x t


  

  



             
(12) 

Taking the fractional integral 
0

C
t tD   to both sides of (12) 

during the period [ , )kt t  for 1[ , )k kt t t   leads to 

( ) ( )

1
( )

( , ( )) ( , ( ))

( ) ( , ( ))
( )

k

k

t t k k

t

tt

V t x t V t x t

t s V s x s ds

 











 
      

(13) 

According to Lemma 5 and the properties of ( ) , for 

1[ , )k kt t t  , we have 

( ) ( )

1
( )

1
( )

( )

( )

( , ( )) ( , ( ))

( ) ( , ( ))
( )

( , ( ))exp ( )
( )

( , ( )) exp ( )
( )

( , ( )) exp ( )
( 1)

k

k

k
k

k

k

t t k k

t

tt

t

t k k t

t k k k

t k k k

V t x t V t x t

t s V s x s ds

V t x t t s ds

V t x t t t

V t x t t t

 




















 










 


 
  

 
 

  
 

 
  

  



     
(14) 

For 1 ( ) ( )
[ , ) ( , ( ))

k
k k t k kt

t t t V V t x t 
 

 
   is easily 

obtained from (8) and (10). From 

exp ( ) 0
( 1) kt t 


 
  

  
, we have 

( )

( )

( , ( ))

( , ( )) exp ( )
( 1)k

t

k k kt

V t x t

V t x t t t










   

           

(15) 

Then, for 0[ , )t t t , from (14) and (15), we have 


1

1

( )

( )

( )

( ) 1 1

1

2
1 1( )

( , ( ))

( , ( ))exp ( )
( 1)

( , ( )) exp ( )
( 1)

( , ( )) exp [( )
( 1)

( ) ]

( , ( )) exp [(
( 1)

k

k

k

k

t

t k k k

k k kt

t k k k

k k

k kt

V t x t

V t x t t t

V t x t t t

V t x t t t

t t

V t x t t





































 

 



 
 

 
  

  
 

    
 

  

 


 

 





0

0

1

( , )
( ) 0 0

1 1 0

)

( ) ]

( , ( ))exp [( )
( 1)

( ) ( ) ]

k

k k

N t t
t k

k k

t

t t

V t x t t t

t t t t










 












  

 
  

    





      

(16) 
By Lemma 6 and 1  , we have 

0

0
( ) ( ) 0 0

1
0 0

( , ( )) ( , ( ))exp ln

( ( , ) 1) ( )
( 1)

t t
t tV t x t V t x t
T

N t t t t

 


 









 
 


 

   

(17) 

According to Lemma 7, (17) can be rewritten as 
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0

0

0
( ) ( ) 0 0

0 0

0
( ) 0 0

0 0

( , ( )) ( , ( ))exp

(1 )( ( , ) 1) ( )ln
( 1)

( , ( ))exp ln

( ) (1 ) ( )(1 )
( 1) ( 1)

t t

t

t tV t x t V t x t
T

N t t t t

t tV t x t
T

t t t t
T

 









 
 





   
 

 
 


   

    
 

 


   
       

(18) 

From the Lyapunov functional (10), we have 
1 ( )1

( ) ( , ( ))tx t V t x t 
                   

(19) 

(0) 2 1
(0, (0)) (0)V x x 

                
(20) 

From (18)-(20), we can get 

1 ( )1

2 01

( ) ( , ( ))

ln(0) exp ( )( )
( 1)

tx t V t x t

x t t
T







 






 
     

 (21) 

It follows that 

 

1

2
01

1

1 2 0 1

( )

ln(0) exp ( )( )
( 1)

exp ( ) (0)

x t

x t t
T

t t x


  
 

 

 
     
  

 (22) 

where 2
1

1





  and 2

ln
( 1) T

 



 
  . 

According to Definition 4, the FOPSS system (5) is 
globally exponentially stable. This completes the proof. 

 B. State feedback controller design
 

In this section, we focus on the problem of controller 
design of the system (5). A state feedback controller will be 
designed to ensure the corresponding closed-loop system 
(23) is globally exponentially stable. Consider the system (5), under the controller 

( )( ) ( )tu t K x t , the corresponding closed-loop system 

is given by 

0 ( ) ( ) ( )( ) ( ) ( )C
t t t t tD x t A B K x t

            (23) 

According to Lemma 2, to guarantee the positivity of the 
system (23), p p pA B K  should be Metzler matrices, 

p S  . Theorem 2 gives some sufficient conditions to 
guarantee that the corresponding closed-loop system (23) is 
globally exponentially stable. 
 
Theorem 2. Consider the FOPSS (23). For given constants 
  and  , if there exist positive vectors pv , p S , such 

that (8) and the following conditions hold: 

p p pA B K are Metzler matrices                 (24) 

 T
p p p p pA v f v 

                       
(25) 

where p S  , T T
p p p pf K B v , pv  [ 1pv , 2pv ,  , 

pnv ], 1  , then resulting closed-loop system (23) is 

globally exponentially stable with the ADT scheme (9). 
 
Proof. By Lemma 2 and (24), we get the system (23) is 
positive. Replacing pA  in (7) with p p pA B K , letting 

T T
p p p pf K B v , ( 1)    satisfies (8), then under the 

ADT scheme (9), we easily obtain that the resulting 
closed-loop system (23) is globally exponentially stable. 

The proof is completed. 
Next, an algorithm is presented to obtain the feedback 

gain matrices pK , p S . 

Step 1. By adjusting the parameters   and solving (8) 
and (26) via linear programming, positive vectors pv  and 

pf  can be obtained. 

Step 2. Substituting pv  and pf  into T T
p p p pf K B v , 

pK  can be obtained. 

Step 3. The gain pK  is substituted into p p pA B K . If 

p p pA B K are Metzler matrices, then pK  are 

admissible. Otherwise, return to Step 1. 
 

IV. NUMERICAL EXAMPLE 
In this section, an example will be given to illustrate the 

effectiveness of the proposed method. Consider the system 
(5) with the parameters as follows: 

1 1

2 2

1.6 0 0.9 0
, ,

0 1.2 0 1.0

1.5 0 1.2 0
, ,

0 1.3 0 1.1

A B

A B

   
       

   
       

 

Let 0.9  , 1.4  , 0.2  . Solving the 
inequalities in Theorem 2 by linear programming, we have 

1 2

1 2

1.8764 1.6315
, ,

1.6843 1.7554

1.3122 1.1518
, ,

1.2087 1.2356

v v

f f

   
    
   
   

    
   

 

1 2

0.7340 0.7176 0.5883 0.6399
, ,

0.7340 0.7176 0.5883 0.6399
K K   

    
   

1 1 1

2 2 2

0.9394 0.6458
,

0.7340 0.4824

0.7940 0.7679
.

0.6471 0.5961

A B K

A B K

 
    

 
      
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It is easy to verify that p p pA B K  are Metzler 

matrices for each p S . Then, according to (9), we can 

obtain * 1.9976T  . Choosing *2T T   . Under the 
state feedback controller, the simulation results are shown 
in Figs 1-3. The initial conditions of the system (5) are 

(0)x   [0.5, 0.3]T . The state trajectories of the 
open-loop system are shown in Fig 1. According to the 
ADT scheme, the switching signals ( )t  is depicted in 
Fig 2. The state trajectories of the closed-loop system with 
ADT are shown in Fig 3. 

 
Fig 1: State trajectories of open-loop system (5). 

 
Fig 2: Switching signals of system (5) with ADT. 

 
Fig 3: State trajectories of closed-loop system (5).

 
V. CONCLUSIONS 

In this paper, we have studied the problem of GES and 
stabilization of FOPSS with ADT. By using ADT approach 
and constructing multiple linear copositive Lyapunov 

functions, a state feedback controller is designed, then a 
series of switching signals and some sufficient conditions 
are obtained to guarantee that the corresponding 
closed-loop system is globally exponentially stable. Such 
sufficient conditions can be solved by linear programming. 
Finally, an numerical example is provided to show the 
effectiveness of the proposed method.  
  

REFERENCES 
[1] S. Liu and Z. Xiang, "Exponential L1 output tracking 

control for positive switched linear systems with 
time-varying delays," Nonlinear Analysis: Hybrid 
Systems, 2014, Vol. 11, pp. 118-128. 

[2] J. Zhang, Z. Hanand F. Zhu, "Finite-time control and 
L1-gain analysis for positive switched systems," 
Optimal Control Applications and Methods, 2015, 
Vol. 36, Issue. 4, pp. 550-565. 

[3] O. Mason and R. Shorten, "On linear copositive 
Lyapunov functions and the stability of switched 
positive linear systems," IEEE Transactions on 
Automatic Control, 2007, Vol. 52, Issue. 7, pp. 
1346-1349. 

[4] B. Xia, J. Lian and X. H. Yuan, "Stability of switched 
positive descriptor systems with average dwell time 
switching," Journal of Shanghai Jiaotong University, 
2015, Vol. 20, Issue. 2, pp. 177-184. 

[5] X. Liu and C. Dang, "Stability analysis of positive 
switched linear systems with delays", IEEE 
Transactions on Automatic Control, 2011, Vol. 56, 
Issue. 7, pp. 1684-1690. 

[6] M. Xiang and Z. Xiang, "Finite-time L1 control for 
positive switched linear systems with time-varying 
delay," Commun. Nonlinear Sci. Numer. Simul, 2013, 
Vol. 18, Issue. 11, pp. 3158-3166. 

[7] M. P. Aghababa and M. Borjkhani, "Chaotic 
fractional-order model for muscular blood vessel and 
its control via fractional control scheme," Complexity, 
2015, Vol. 20, Issue. 2, pp. 37-46. 

[8] Baleanu, Dumitru, Guvenc and B. Ziya, "New Trends 
in Nanotechnology and Fractional Calculus 
Applications" 2014. 

[9] R. Hilfer, "Application of Fractional Calculus in 
Physics," World Scientific, 2000, Vol. 35, Issue. 12, i. 

[10] M. Ortigueira and T. Machado, "Special issue on 
fractional signal processing and applications," Signal 
Process, 2003, Vol. 83, Issue. 11, pp. 2285-2480. 

[11] T. T. Hartley, C. F. Lorenzo and H. K. Qammer, 
"Chaos in a fractional-order Chuas system," IEEE 
Trans Circ Syst I, 1995, Vol. 42, pp. 485-490. 

[12] J, Lu and G. Chen, "Robust Stability and Stabilization 
of Fractional-Order Interval Systems: An LMI 
Approach," IEEE Transactions on Automatic Control, 
2009, Vol. 54, Issue. 6, pp. 1294-1299. 

[13] J. Sabatier, M. Moze and C. Farges, "LMI stability 
conditions for fractional order systems," Computers 
and Mathematics with Applications 2010, Vol. 59, 
Issue. 5, pp. 1594-1609. 



 
Global Exponential Stability and Stabilization of Fractional-Order Positive Switched Systems 

 

Copyright © 2017. Innovative Research Publications. All Rights Reserve 338 
 

[14] L. Chen, R. Wu, Y. He, et al, "Robust stability and 
stabilization of fractional-order linear systems with 
polytopic uncertainties," Applied Mathematics and 
Computation, 2015, Vol. 257, Issue. C, pp. 274-284. 

[15] M. S. Tavazoei and M. Haeri, "A note on the stability 
of fractional order systems" Mathematics and 
Computers in Simulation, 2009, Vol. 79, Issue. 5, pp. 
1566-1576. 

[16] C. Yin, Y. Cheng, S. Zhong, et al, "Fractional-order 
switching type control law design for adaptive sliding 
mode technique of 3D fractional-order nonlinear 
systems," Complexity, 2016, Vol. 21, Issue. 6, pp. 
363-373. 

[17] Y. Chen, Y. Wei, H. Zhong, et al, "Sliding mode 
control with a second-order switching law for a class of 
nonlinear fractional order systems," Nonlinear 
Dynamics, 2016, pp. 1-11. 

[18] S. Balochian, "Stabilization of autonomous linear time 
invariant fractional order derivative switched systems 
with different derivative in subsystems," Bulletin of the 
Polish Academy of Sciences Technical Sciences, 2014, 
Vol. 62, Isue. 3, pp. 495-503. 

[19] J. Shen and J. Lam, "Stability and Performance 
Analysis for Positive Fractional-Order Systems With 
Time-Varying Delays," \emph{IEEE Transactions on 
Automatic Control}, 2016, Vol. 61, Issue. 9, pp. 
2676-2681. 

[20] M. Busiowicz, "Robust stability of positive 
discrete-time linear systems of fractional order," 
Bulletin of the Polish Academy of Sciences Technical 
Sciences, 2010, Vol. 58, Issue. 4, pp. 567-572. 

[21] A. Babiarz, A. Legowski and M. Niezabitowski, 
"Controllability of positive discrete-time switched 
fractional order systems for fixed switching sequence," 
Lecture Notes in Artificial Intelligence, 2016, Vol. 
9875, pp. 303-312. 

[22] X. Zhao, Y. Yin and X. Zheng, "State-dependent 
switching control of switched positive fractional-order 
systems," ISA Transactions, 2016, Vol. 62, pp. 
103-108. 

[23] L. Liu, X. Cao, Z. Fu, et al, "Guaranteed cost 
finite-time control of fractional-order positive switched 
systems," Advances in Mathematical Physics, Vol. 
2017, ID. 2695894.  


