International Research Journal of Ayurveda & Yoga Vol. 8(2), pp. 19-27, February, 2025

Available online at http://irjay.com

ISSN: 2581-785X

DOI: 10.48165/IRJAY.2025.80205

REVIEW ARTICLE

Unraveling the Wound Management Potential of *Dravyas* in *Bhavaprakasa Nighantu*: A Review

Aswathy P. Kumar¹, Robin J. Thomson², S. Sooraj³

¹PG Scholar, Department of Dravya Guna Vigyana, Mannam Ayurveda Cooperative Medical, Pandalam, Kerala, India. ²Principal and HOD, Department of Shalyatantra, Mannam Ayurveda Cooperative Medical College, Pandalam, Kerala, India. ³HOD, Department of Dravya Guna Vigyana, Mannam Ayurveda Cooperative Medical College, Pandalam, Kerala, India.

ARTICLE INFO

Article history:

Received on: 18-01-2025 Accepted on: 19-02-2025 Published on: 28-02-2025

Key words:

Bhavaprakasha Nighantu, Vranaropana, Vranashodana, Vranya dravya, Wound Management

ABSTRACT

This review investigates the potential of *Vranya Dravyas* from the Bhavaprakasa Nighantu in wound management, combining traditional Ayurvedic knowledge with modern practices. Effective wound healing is vital for preventing infections and facilitating recovery, and Ayurvedic texts provide detailed descriptions of various medicinal plants with significant antimicrobial, anti-inflammatory, and regenerative properties. The review is based on comprehensive literature sources, including Bhavaprakasa Nighantu and various pharmacological texts, which detail the properties, uses, and actions of these plants in promoting wound healing. The findings indicate that these herbs, through their synergistic effects, align closely with modern wound care principles, showcasing their potential as effective adjuncts to synthetic treatments. However, further clinical trials and research are necessary to validate their efficacy, standardize formulations, and fully integrate these traditional remedies into contemporary medicine.

1. INTRODUCTION

A wound is a disruption in the integrity of the skin or underlying tissues, resulting from trauma, surgical procedures, or pathological conditions. Effective wound management is essential for preventing infections, speeding up healing, and reducing complications. Bhavaprakasa Nighantu plays a crucial role in understanding medicinal plants for wound care by providing detailed descriptions of various plants and their healing properties, specifically aimed at promoting wound cleansing and healing. Vrana is the Sanskrit term for wound. "Vran gatravichurne" gatra^[1] means body part and vichurne means destruction or break. The Vranya Dravyas plants and substances used specifically for wound management were essential in both medical and surgical wound care. It is reported that chemical constituents of plants, i.e., tannins, flavonoids, sterols, polyphenols, saponins, and tri-terpanoids have specific roles in wound healing due to astringent, antimicrobial, antioxidant, free scavenging activities, and improvement in vascularity.[2] Wound healing is the normal phenomenon of the body that involves the sequential process of phagocytosis.[3] It mainly consists of three phases - Inflammatory,

Corresponding Author: Aswathy. P. Kumar,

PG Scholar, Department of Dravya Guna Vigyana, Mannam Ayurveda Cooperative Medical, Pandalam, Kerala, India.

E-mail: draswathykumaran@gmail.com

proliferative, and remodeling. Ayurveda involves two key processes for wound management: Vranashodana (wound cleansing) and Vranaropana (wound healing). Ropana is closely linked to Shodhana because a wound cannot heal unless it is purified. Thus, healing can only occur if the Vrana is clean.^[4] The wound healing and cleansing properties of the herbs can be identified through their pharmacodynamics. The rasa, guna, veerya, and vipaka are considered as pharmacodynamics attributes of drugs. The pharmacodynamic attributes of the herbs which indicate Katu and Tikta Rasa are useful in Vrana Shodhana, Madhura, Kashaya, and Tikta Rasa for Vrana Ropana and Tikta, Katu Rasa for Vrana-Shodhana-Ropana. [5] There is a lack of clarity about how Ayurvedic medicinal plant's function, especially in wound healing. Although these plants are commonly used in traditional medicine, their specific healing actions and effects have not been extensively researched, making it challenging to understand their true benefits and mechanisms. This review aims to highlight the ancient knowledge from the Bhavaprakasha Nighantu for wound management and encourage further scientific exploration of the many Ayurvedic plants that have not yet been studied.

1.1. Classification of Wounds^[6]

Wound is a break in the continuity of body tissue. They are classified using various strategies based on factors such as their cause, location,

type of injury, symptoms, depth, extent of tissue damage, and clinical manifestations.

Open wounds: In open wounds, blood escapes outside the body, making the bleeding clearly visible. These wounds are further classified into incised wounds, lacerations or tear wounds, abrasions or superficial wounds, puncture wounds, penetration wounds, and discharge wounds.

Closed wounds: In closed wounds, blood escapes from the circulatory system but remains inside the body. This type includes contusions (bruises), hematomas (blood clots), and crush injuries.

Acute wounds: Acute wounds involve tissue damage that heals through an orderly and timely process, resulting in the restoration of anatomical and functional integrity. These wounds are typically caused by cuts or surgical incisions and heal within the expected timeframe.

Chronic wounds: Chronic wounds fail to progress through the normal stages of healing, often leading to prolonged inflammation. They require extended periods to heal and may frequently recur.

Wound-Healing Process: Wound healing is a complex process that results in the restoration of anatomic continuity and function by several processes which involve the following phases [Table 1].

1.2. Phases of Wound Healing

Wound healing is an intricate step-by-step process that involves the stages of hemostasis, inflammation, proliferation, and remodeling. Wound healing involves continuous cell-cell and cell-matrix interactions that allow the process to proceed in three overlapping phase's, namely inflammation (0–3 days), cellular proliferation (3–12 days), and remodeling (3–6 months).^[7]

The TIME framework was developed as a practical tool for the management of wounds. TIME summarizes four main components of wound bed preparation.^[8]

- T- Tissue Management
- I- Control of inflammation and infection
- M- Maintenance of moisture balance
- E- Advancement of the epithelial edge of the wound

The management of wounds is described in Sushruta samhita Chikitsasthana in a very detailed manner. [9] Shashti Upakarma provides a framework for various therapeutic procedures. Wound healing in animals is an essential process for the repair and restoration of function of tissue after injury. [10] It is particularly useful in wound management and promotes both prevention and restoration of health. It offers effective wound management by emphasizing the principles of Shodhana (cleansing) and Ropana (healing). There is no fundamental difference between the TIME framework and the principles of Shashti Upakramas; the only variation is in how they are applied. The principles of Shodhana focus on tissue management and controlling inflammation and infection, while the principles of Ropana emphasize maintaining moisture balance and advancing the epithelial edge of the wound.

1.3. Role of Bhavaprakasha Nighantu in Wound Management

The Bhavaprakasha Nighantu is a comprehensive reference book for studying all aspects of drugs, from their origins to their pharmacological actions. It focuses on *karmaoushadi* (action-based drugs) and serves as a drug index in Ayurveda. Authored by Bhavamishra in 16th century which is organized into 22 *vargas*. It offers a comprehensive guide to

medicinal plants known for their wound-healing abilities and details various single drugs with *Vrana, Vranaropaka, and Vranashodaka*, providing detailed information on their properties, uses, and effects. This ancient text remains a crucial reference for selecting effective herbal treatments for wounds and plays a vital role in blending traditional knowledge with modern wound management practices in Ayurveda.

1.4. Phytoconstituents and Their Role in Wound Healing

Polyphenols and Saponin: Anti-microbial and antioxidant properties that encourage blood clotting, combat infections, and accelerate wound healing.

Phenolic compounds: Astringent and antimicrobial contribute to wound healing through their astringent properties and ability to fight infections.

Free Radical Scavenging: They also act as free radical scavengers, reducing oxidative stress and promoting cell viability.

Flavonoids: A subgroup of polyphenols, enhance wound healing by preventing lipid peroxidation, thus minimizing cell damage and improving collagen fibril viability.

Tannin and Tri-terpenoids: Promote wound healing due to their astringent and antimicrobial property and also act as free radical scavengers [Table 2].[11]

2. MATERIALS AND METHODS

The review of herbs was based on Bhavaprakasha Nighantu, while the pharmacodynamics and pharmacological attributes were sourced from various textbooks, including Dravyaguna vigyana by J.L.N. Shastri well as the Ayurveda Pharmacopoeia of India. The review on wound management drew from reputable journals and websites. The drugs in Bhavaprakasha Nighantu were evaluated for their individual *Vrana ropaka* and *Vrana shodana* properties. In addition, the botanical names, family names, and *Rasapanchaka* of all the *Dravyas* were documented, and their pharmacological and pharmacodynamic activities were tabulated [Table 3 and 4].[12-14]

4. DISCUSSION

4.1. Wound-Healing Mechanisms of Vranya Dravyas

The primary modes of action identified among these dravyas are anti-inflammatory, antimicrobial, and antioxidant effects, which collectively aid in different phases of wound healing [Table 2]. For instance, tannins and flavonoids contribute to anti-inflammatory effects, and flavonoids are known to have good anti-inflammatory properties. The structure of flavonoids plays an important role in antiinflammatory activity.^[15] It plays a crucial in the initial inflammatory phase of wound healing. The ability of these compounds to scavenge free radicals further prevents cellular damage, which is especially vital in chronic wounds prone to prolonged inflammation. In addition, saponins, triterpenoids, and phenolic compounds, due to their astringent and antimicrobial properties, aid in infection control a critical factor in wound management, especially for open and contaminated wounds. The wound-healing properties of these drugs are often attributed to their ability to enhance collagen synthesis, reduce inflammation, and prevent infection. Wound-cleansing drugs focus on maintaining a sterile environment and preventing bacterial colonization, which is crucial for effective healing. Both categories of drugs often contain overlapping phytochemicals, indicating a holistic approach in Ayurvedic medicine where one herb may serve multiple purposes.

4.2. Synergy with Modern Wound Care

The TIME framework in contemporary wound care, which emphasizes tissue management, infection control, moisture balance, and edge advancement, aligns closely with the Ayurvedic principles of *Vranashodana* (cleansing) and *Vranaropana* (healing). Herbs with *Katu and Tikta Rasa* are useful for *Vranashodana*, while those with *Madhura and Kashaya Rasa* are ideal for *Vranaropana*, showing how Ayurvedic pharmacodynamics can integrate into clinical practice. This alignment suggests that Ayurvedic herbs could be valuable in preparing wound bed conditions favorable for healing, thus serving as adjuncts to conventional treatments.

4.3. Pharmacodynamics and Clinical Implications

The pharmacodynamics of *Vranya Dravyas*, involving the properties of *Rasa, Veerya, and Vipaka*, indicate that these herbs act not only on wound sites but also systemically, potentially promoting overall immune health and resilience. Herbs with *Tikta and Katu Rasa* show strong potential for tissue debridement and infection prevention, as seen in their widespread use in Ayurvedic surgery for wound cleansing. Meanwhile, herbs with *Madhura* (sweet) and *Kashaya Rasa* have shown wound-healing benefits, with *Raktastambhaka* properties contributing to hemostasis, a crucial step in acute wound management.

4.4. Challenges

Despite the promising properties of these *dravyas*, there is limited scientific data on their exact mechanisms of action and clinical efficacy in wound healing. Most observations in traditional texts have yet to be validated by rigorous experimental studies, which presents a challenge for the systematic integration of Ayurvedic practices into mainstream medicine. Moreover, while Ayurvedic herbs are highly effective in managing wounds through natural means, standardizing dosages and formulations remains a challenge due to the inherent variability in plant sources and preparation methods. These gaps underscore the need for more clinical trials and experimental studies to substantiate the observed therapeutic effects of *Vranya Dravyas*.

5. CONCLUSION

The findings affirm that the application of Ayurvedic medicinal plants provides a promising alternative to synthetic treatments, particularly due to their antimicrobial, anti-inflammatory, and wound-healing properties. The aim of this review is to illuminate the wound management potential of *Vranya Dravyas* from the Bhavaprakasa Nighantu and to bridge the divide between traditional Ayurvedic knowledge and contemporary medical practices. By showcasing the pharmacodynamics of these herbs, the review advocates for their integration into modern wound care strategies. However, the current lack of extensive scientific validation necessitates further research, including clinical trials, to establish their true efficacy and safety. Ultimately, this endeavor seeks to enrich modern wound management practices with the time-tested wisdom of Ayurveda, fostering a more holistic approach to healthcare.

6. ACKNOWLEDGMENTS

None.

7. AUTHORS' CONTRIBUTIONS

All the authors contributed equally in design and execution of the

8. FUNDING

Nil.

9. ETHICAL APPROVALS

This study is not required ethical clearance as it is review study.

10. CONFLICTS OF INTEREST

Nil.

11. DATA AVAILABILITY

This is an original manuscript and all data are available for only review purposes from principal investigators.

12. PUBLISHERS NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES

- Acharya YT, editor. Sushruta samhita of sushruta, Chikitsa sthana. Ch. 1. Ver. 3. Varanasi: Chaukhambha Orientalia; 2017. p. 98.
- Kumar V, Nesari TM, Ghildiyal S, Sherkhane R. Pharmacodynamic appraisal of wound healing herbs of sushruta samhita. Ayu. 2021;42(9):1-18.
- Padvi SB, Sharma R, Shah HS. Essential ayurvedic diagnostic approach of vrana-a conceptual study. J Ayurveda Integr Med Sci. 2024;9(3):178-80.
- 4. Velnar T, Bailey T, Smrkolj V. The wound healing process: An overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528-32.
- 5. Vinaya B. Time framework and insights from ayurveda on wound management. Int J Res Ayurveda Pharm. 2014;5(8):561-5.
- Yadav S, Kadu AS, Chandel V, Verma P. A critical review of Vishaghna Dravya mentioned in Bhavprakash Nighantu. Int J Health Sci Res. 2020;10:210-5.
- Sivamani R, Ma B, Wehrli L, Maverakis E. Phytochemicals and naturally derived substances for wound healing. Adv Wound Care (New Rochelle). 2012;3:213-7. doi: 10.1089/wound.2011.0330
- Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D'Alessandro AM. Phytochemistry and biological activity of medicinal plants in wound healing: An overview of current research. Molecules. 2020;10(1):210-5. doi: 10.3390/molecules27113566
- Vitthalrao A, Kadam RV. Shashti upakrama by sushruta in the management of Vrana W.S.R. to wound-a literature review. Int Ayurvedic Med J. 2021;10(1):210-5.
- Saini S, Dhiman A, Nanda S. Traditional Indian medicinal plants with potential wound healing activity: A review. Int J Pharm Sci Res. 2016;6(8):1809-19.
- Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: Biological and therapeutic considerations. Exp Dermatol. 2016;6(8):1809-19. doi: 10.1111/exd.12929
- VishakhaVitthalrao A, Kadam RV. Shashti upakrama by sushruta in the management of vrana W.S.R. to wound-a literature review. Int Ayurvedic Med J. 2021;8(5):180-5.

- Government of India, Ministry of Health and Family Welfare, Department of Ayush. API-Ayurvedic pharmacopeia of India. Vol, 1-5. India: Government of India, Ministry of Health and Family Welfare, Department of Ayush; 2012.
- Sastry JL. Dravyaguna vijnyan [Study of the essential medicinal plants in ayurveda]. Vol. 2, 9. Varanasi: Chaukhambha Orientalia; 2010. p. 89-90.
- Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory

molecules: A review. Molecules. 2022;27(9):2901. doi: 10.3390/molecules27092901

How to cite this article:

Kumar AP, Thomson RJ, Sooraj S. Unraveling the Wound Management Potential of *Dravyas* in *Bhavaprakasa Nighantu*: A Review. IRJAY. [online] 2025;8(2);19-27.

Available from: https://irjay.com

DOI link- https://doi.org/10.48165/IRJAY.2025.80205

Table 1: Wound-healing process

Hemostasis

Vascular constriction,

Platelet aggregation, degranulation, and fibrin formation (thrombus)

Inflammatory Phase

Neutrophil infiltration

Monocyte infiltration and differentiation to macrophage

Lymphocyte infiltration

Proliferative Phase

Re-epithelialization

Angiogenesis

Collagen synthesis

ECM formation

Remodeling Phase

Collagen remodeling

Vascular maturation and regression

Table 2: Pharmacological activities of herbs supporting wound healing

1.	Anti-inflammatory activity
2.	Antioxidant activity
3.	Antimicrobial activity
4.	Analgesic activity

Table 3: List of Vranya Dravyas with Pharmacodynamics in Bhavaprakasha Nighantu

Name	Botanical Name	Family name	Rasa	Virya	Vipaka
Harithaki	Terminalia chebula Reatz.	Combretaceae	Lavana varjitha pancha rasa	Ushna	Madhura
Ardraka	Zingiber officinale Roscoe.	Zingiberaceae	Katu, Tikta	Ushna	Madhura
Shathapuspha	Anethum Sowa Kurz.	Umbelliferae	Katu , Tikta	Ushna	Katu
Vamsalochana	Bambusa arundinaceae Willd.	Poaceae	Kashaya Madhura,	Sita	Madhura
Yashtimadhu	Glycrrhiza glabra Linn.	Leguminosae	Madhura	Sita	Madhura
Kampillaka	Mallotus Philippensis Muell.Arg	Euphorbiaceae	Katu	Ushna	Katu
Kiratatiktaka	Andrographis paniculata Nees.	Acanthaceae	Tikta katu	Sita	Katu
Madana	Randia dumetorum Lam.	Rubiaceae	Madhura, tikta	Ushna	Katu
Pashanabheda	Aerva lanata Juss.	Amaranthaceae	Tikta , Kashaya	Sita	Katu
Nakuli	Aristolochia indica Linn.	Aristolochiaceae	Katu Tikta	Ushna	Katu
Manjishta	Rubia cordifolia Lam.	Rubiaceae	Madhura, Tikta, Katu	Ushna	Katu
Haridra	Curcuma longa Linn.	Zingiberaceae	Tikta, Katu	Ushna	Katu
Daruharidra	Berberis aristata	Berberidaceae	Tikta, Kashaya	Ushna	Katu
Bhallataka	Semecarpus anacardium Linn.f.	Anacardiaceae	Katu, tiktha	Ushna	Katu
Laksha	Laccifer lacca (Kerr).	Lacciferidae	Madhura	Sita	Madhura
Raktachandana	Pterocarpus santalinus Linn.f.	Fabaceae	Tikta, Madhura	Sita	Madhura
Pathanga	Caesalpinia sappan Linn.	Caesalpiniaceae	Kashaya, Tikta	Sita	Katu
Sarala	Pinus longifolia Roxb.	Pinaceae	Tikta, Madhura	Ushna	Katu
Sarala Niryasa	Oleo-resin of pinus longifolia		Tikta, Kashaya	Ushna	Madhura
Padmaka	Prunus cerasoides Roxb.ex wall	Rosaceae	Kashaya, Tikta	Sita	Katu
Rala	Resin of Shorea robusta Gaertn.f.	Dipterocarpaceae	Kashaya, Tikta	Sita	Madhura
Kumkum	Crocus sativus Linn.	Iridaceae	Tikta, Katu	Ushna	Madhura

(Contd...)

Table 3: (Continued)

Name	Botanical Name	Family name	Rasa	Virya	Vipaka
Nakha	Helix aspera		Katu	Ushna	Katu
Veerana	Andropogon muricatusRetz.	Gramineae	Tikta, Kashaya	Sita	Katu
Shaileyam	Parmelia perlata Ach.	Parmeliaceae	Tikta, Kashaya	Ushna	Katu
Kachura	Curcuma zeodoria Rosc.	Zingiberaceae	Tikta, Katu	Ushna	Katu
Kapoora kachari	Hedychium spicatum Ham.ex Smith	Zingiberaceae	Tikta, Katu	Ushna	Katu
Granthiparna bheda	Angelica glauca Edgw.	Umbelliferae	Tikta, Madhura	Ushna	Katu
Elavaluka	Prunus avium L.	Rosaceae	Kashaya	Ushna	Katu
Parpati	Pogostemon patchouli var.sauvis Hook.f.	Laniaceae	Katu, Tikta, Kashaya	Usna	Katu
Swetha Arka	Calotropis gigantea (Linn.) R.Br.ex Ait.	Asclepiadaceae	Tikta, Katu	Usna	Katu
Raktha Arka	Calotropis procera (Ait.) R.Br	Asclepiadaceae	Tikta, Katu	Usna	Katu
Sehund	Euphorbia Neriifolia Linn.	Euphorbiaceae	Katu	Usna	Katu
Kalihari	Gloriosa superba Linn.	Liliaceae	Katu, Tikta	Ushna	Katu
Karavira	Nerium odorum Soland	Apocyanaceae	Katu, Ttikta	Ushna	Katu
Dhattura	Datura metel Linn.	Solanaceae	Tikta, Katu	Ushna	Katu
Kanchanara	Bauhinia variegata Linn.	Fabaceae	Kashaya, Tikta	Sita	Katu
Shigru	Moringa pterygosperma Gaertn.	Moringaceae	Katu, Tikta	Ushna	Katu
Aparajitha	Clitoria ternatea Linn.	Fabaceae	Tikta, Kashaya	Sita	Katu
Karanja	Pongamia pinnata	Leguminosae	Katu, Tikta	Ushna	Katu
Gunja	Abrus precatorius Linn.	Fabaceae	Tikta, Katu	Ushna	Katu
Vamsa	Bambusa arundinaceae	Graminae	Madhura	Sita	Madhura
Patha	Cissampelos paeira Linn.	Menispermaceae	Tikta, Kashaya	Ushna	Katu
Indravaruni	Citrullus colocynthis Schrad.	Cucurbitaceae	Tikta, Katu	Ushna	Katu
Sarapunkha	Tephrosia purpurea Linn.	Fabaceae	Tikta, Katu	Ushna	Katu
Kakajanga	Perstrope bicalyculata	Acanthaceae	Tikta, Kashaya	Sita	Katu
Meshashringi	Dolichandrone falculata Seem.	Bignonaceae	Tikta, Madhura	Ushna	Madhura
Hamsapadi	Adiantum lunulatum Burm.	Adiantaceae	Tikta, Katu	Ushna	Katu
Vandha	Loranthus Longiflorus Desr.	Loranthaceae	Tikta, Kashaya	Sita	Madhura
Vandhyakarkotaki	Momordica dioica Roxb.	Cucurbitaceae	Tikta, Katu	Ushna	Katu
Jalapippali	Lippia nodiflora Mich.	Cucurbitaceae	Tikta, Katu	Ushna	Katu
Nagadhamani	Pupalia lappacae Moq.	Amaranthaceae	Tikta, Katu	Ushna	Katu
Sarpakshi	Ophiorrhiza mungos Linn.	Rubiaceae	Tikta, Kashaya	Sita	Katu
Yuthika	Jasminum auriculum Vahl.	Oleceae	Tikta, Madhura	Ushna	Madhura
Malllika	Jasminum sambac	Oleaceae	Madhura	Sita	Madhura
Karnikara	Abroma augusta	Sterculiaceae	Madhura, Tikta	Sita	Madhura
Pippala	Ficus religiosa	Moraceae	Madhura	Ushna	Madhura
Udumbara	Ficus glomerata Roxb.	Moraceae	Madhura	Sita	Madhura
Kako udumbara	Ficus hispida Linn.	Moraceae	Kashaya, Madhura	Sita	Madhura
Plaksha	Ficus infectoria Roxb.	Moraceae	Madhura, Kashaya	Sita	Madhura
Sirisha	Albizzia lebbeck Benth.	Moraceae	Tikta, Kashaya	Sita	Katu
Shala	Shorea robusta Gaertn.f.	Dipterocarpaceae	Kashaya, Tikta	Sheeta	Madhura
Shallaki	Boswellia serrata Roxb.	Burseraceae	Kashaya	Sheeta	Katu
Irimeda	Acacia farnesiana Willd.	Mimosaceae	Madhura	Sheeta	Madhura
Ingudi	Balanites roxburghii Planch.	Simaroubaceae	Kashaya	Ushna	Katu
Jingini	Odina woodier Roxb.	Anacardiaceae	Tikta	Ushna	Madhura
Palasa	Butea frondisa Koen.ex Roxb.	Fabaceae	kasaya	Ushna	Katu
Karira	Capparis aphylla Roth.	Capparidaceae	Katu	Ushna	Katu
ismi ti u	сарринь ирнуна пот.	гирри шисеие	Tikta	Osmu	114111

 Table 3: (Continued)

Name	Botanical Name	Family name	Rasa	Virya	Vipaka
Simsapa	Dalbergia sisso Roxb.	Fabaceae	Kashaya	Sheeta	Madhura
Thuni	Cederala toona Roxb.	Meliaceaea	Tikta, Madhura	Sheeta	Katu
Dhanwanka	Grewia tilifoelia	Tiliceae	Kasaya	Sita	Katu
Katabi	Albizzia procera	Lecythidaceae	Tikta	Ushna	Katu
Panasa	Artocarpus heretophyllus Lam	Moraceae	Kashaya Madhura	Sita	Madhura
Sapthaparna	Alstonia scholaris R.Br.	Apocyanaceae	Tikta Kashaya	Ushna	Katu
Kosamra	Schleichera trijuga Willd.	Sapindaceae	Madhura	Sita	Madhura
Bahuvara	Cordia myxa Roxb.	Boraginaceae			
Sindoora	Red oxide of Lead		Kashaya	Ushna	Katu
Gandhaka	Sulfur		Tikta, Katu	Ushna	Katu
Haritala	Yellow Arscenic		Tikta, Katu	Ushna	Katu
Raktha sali	Oryza sativa	Graminae	Madhura	Sita	Madhura
Godhuma	Triticum aestivum	Poaceae	Madhura	Sita	Madhura
Tila	Sesamum indicum Linn.	Pedaliacaeae	Madhura	Ushna	Madhura
Loni	Portulaca quadrifolia Linn.	Portulacaceae	Amla	Ushna	Madhura
Sarjarasa thailam	Vateria indica	Diptercarpaceae	Kashaya	Sita	Katu

Table 4: List of Drayvas with bioactive compounds and their pharmacoclogical activities^[15]

Dravya	Bioactive Compounds	Pharmacological Action
Harithaki	Tannins, chebulic acid, ellagic acid	Laxative, antioxidant, anti-inflammatory
Ardraka	Gingerols, shogaols, paradols	Anti-inflammatory, analgesic, antimicrobial
Shathapuspha	Anethole, carvone, limonene	Antispasmodic, carminative, antimicrobial
Vamsalochana	Silica, benzoic acid	Antioxidant, anti-inflammatory
Nakuli	Tannins, glycosides, flavonoids	Antioxidant, antimicrobial, hepatoprotective
Yashtimadhu	Glycyrrhizin, flavonoids, saponins	Antioxidant, anti-inflammatory, demulcent
Kampillaka	Kampillin, isorhamnetin, tannins	Laxative, antimicrobial, anti-inflammatory
Kiratatiktaka	Swertiamarin, sweroside, mangiferin	Anti-inflammatory, hepatoprotective, antipyretic
Madana	Fatty acids, flavonoids, phenolic compounds	Laxative, emetic, antioxidant
Pashanabheda	Bergenin, beta-sitosterol	Anti-urolithiatic, diuretic, anti-inflammatory
Manjishta	Rubiadin, anthraquinones, flavonoids	Blood purifier, antioxidant, anti-inflammatory
Haridra (Turmeric)	Curcuminoids, volatile oils	Anti-inflammatory, antioxidant, antimicrobial
Daruharidra	Berberine, flavonoids, tannins	Anti-inflammatory, antimicrobial, antipyretic
Bhallataka	Phenolic compounds, anacardic acid	Analgesic, anti-inflammatory, immunomodulator
Laksha	Tannins, resin acids	Anti-inflammatory, astringent, wound healing
Raktachandana	Santalin, santalic acid, terpenes	Antioxidant, anti-inflammatory
Pathanga	Anthraquinones, flavonoids, saponins	Antimicrobial, antioxidant
Sarala	Resin, oleoresin, pinene	Analgesic, anti-inflammatory, antimicrobial
Sarala Niryasa	Resins, diterpenes	Anti-inflammatory, analgesic
Padmaka	Tannins, flavonoids, glycosides	Antioxidant, anti-inflammatory
Rala	Gum resins, essential oils	Antiseptic, anti-inflammatory
Kumkum	Crocin, safranal, carotenoids	Antioxidant, antimicrobial, anti-inflammatory
Nakha	Terpenes, sesquiterpenes	Antiseptic, aromatic, antimicrobial
Veerana	Essential oils, flavonoids	Antimicrobial, anti-inflammatory
Kachura	Terpinene, cineole, zingiberene	Antiseptic, antimicrobial, anti-inflammatory
Kapoora Kachari	Camphene, terpinene, cineole	Analgesic, anti-inflammatory, antimicrobial
Granthiparni	Tannins, alkaloids, phenols	Anti-inflammatory, antioxidant

Table 4: (Continued)

Dravya	Bioactive Compounds	Pharmacological Action
Parpati	Alkaloids, resins	Antimicrobial, anti-inflammatory
Swetha Arka	Alkaloids, flavonoids	Anti-inflammatory, analgesic, antimicrobial
Raktha Arka	Saponins, alkaloids	Antiseptic, anti-inflammatory
Kalihari	Saponins, glycosides	Anti-inflammatory, analgesic
Karavira	Cardiac glycosides, alkaloids	Antimicrobial, anti-inflammatory
Dhattura	Atropine, scopolamine, hyoscyamine	Analgesic, antispasmodic
Kanchanara	Flavonoids, tannins, alkaloids	Antimicrobial, anti-inflammatory
Shigru (Moringa)	Quercetin, beta-sitosterol, chlorogenic acid	Antioxidant, anti-inflammatory, antimicrobial
Aparajitha	Triterpenes, flavonoids, anthocyanins	Antioxidant, antimicrobial, immunomodulatory
Karanja	Pongamol, karanjin, flavonoids	Antimicrobial, anti-inflammatory, antioxidant
Gunja	Abrin, glycosides	Anti-inflammatory, analgesic
Vamsa	Silica, flavonoids, saponins	Antimicrobial, anti-inflammatory
Patha	Alkaloids, tannins	Anti-inflammatory, analgesic
Indravaruni	Cucurbitacins, flavonoids	Anti-inflammatory, hepatoprotective
Sarapunkha	Flavonoids, glycosides, tannins	Hepatoprotective, antioxidant, anti-inflammator
Kakajanga	Tannins, phenols, saponins	Analgesic, anti-inflammatory
Meshashringi	Gymnemic acids, saponins, flavonoids	Anti-diabetic, anti-inflammatory, antioxidant
Hamsapadi	Flavonoids, saponins	Antimicrobial, anti-inflammatory
Bandha	Tannins, alkaloids	Anti-inflammatory, antimicrobial
Yandhyakarkotaki	Saponins, glycosides	Anti-inflammatory, analgesic
Talapippali	Alkaloids, glycosides	Analgesic, antimicrobial
Nagadhamani	Alkaloids, phenols, glycosides	Antimicrobial, anti-inflammatory
Sarpakshi	Flavonoids, saponins	Antioxidant, antimicrobial
Yuthika	Essential oils, flavonoids	Antiseptic, antimicrobial
Malllika	Terpenes, flavonoids, alkaloids	Antimicrobial, antioxidant
Karnikara	Flavonoids, tannins, saponins	Anti-inflammatory, antioxidant
Pippala	Piperine, alkaloids, lignans	Antimicrobial, anti-inflammatory
Udumbara	Tannins, glycosides, saponins	Antioxidant, anti-inflammatory
Kako udumbara	Tannins, flavonoids, saponins	Antioxidant, anti-inflammatory
Plaksha	Flavonoids, tannins, resins	Antioxidant, antimicrobial
Sirisha	Flavonoids, tannins, saponins	Antioxidant, antimicrobial, anti-inflammatory
Shala	Tannins, resin, triterpenes	Antimicrobial, anti-inflammatory
Khadira	Catechins, flavonoids, tannins	Antimicrobial, antioxidant
rimeda	Saponins, tannins	Antioxidant, antimicrobial
'ngudi	Tannins, saponins	Antimicrobial, anti-inflammatory
Iingini	Flavonoids, alkaloids	Antioxidant, antimicrobial
Karira	Alkaloids, glycosides	Anti-inflammatory, antimicrobial
Simsapa	Tannins, flavonoids	Anti-inflammatory, antimicrobial
Thuni	Tannins, flavonoids	Antioxidant, antimicrobial
Katabi	Tannins, alkaloids	Anti-inflammatory, antimicrobial
Sapthaparna	Alkaloids, terpenoids, flavonoids	Antimicrobial, anti-inflammatory
Kosamra	Alkaloids, tannins	Antioxidant, antimicrobial
Sindoora	Sulfur compounds	Antimicrobial, anti-inflammatory
Gandhaka	Sulfur compounds Sulfur compounds	Antimicrobial, anti-inflammatory Antimicrobial, anti-inflammatory
yananaka Haritala	Arsenic compounds, alkaloids	Antimicrobial, anti-inframmatory Antiseptic, antimicrobial
Raktha sali	Flavonoids, anthocyanins	Antioxidant, anti-inflammatory

 Table 4: (Continued)

Dravya	Bioactive Compounds	Pharmacological Action
Tila	Sesamin, sesamol, lignans	Antioxidant, anti-inflammatory
Loni	Tannins, saponins	Antioxidant, anti-inflammatory
Nalasakha	Flavonoids, tannins	Analgesic, antimicrobial
Sarjarasa thailam	Resins, essential oils, terpenes	Anti-inflammatory, antimicrobial