Metabolic versatility and species identification of fluorescent Pseudomonas using carbon utilization profiles
DOI:
https://doi.org/10.48165/jefa.2025.20.2.28Keywords:
Metabolic profile, Pseudomonas, carbohydrate utilization, HicarboTM kitAbstract
This study examines the metabolic versatility of ten fluorescent Pseudomonas isolates obtained from rhizospheric soil. The isolates, (BS-1, BS-2, BS-3, BS-4, 9704, 9829, 9809, BSP-19, BSP-14, BSP-23) demonstrated a high degree of metabolic versatility, highlighting their adaptability to diverse ecological niches. Carbon source utilization profiles were developed using the HicarboTM kit, revealing that Pseudomonas aeruginosa shared 70 per cent phenotypic similarity with the isolates, thereby affirming the value of standard datasets for species identification. The observed metabolic diversity highlights the potential applications of Pseudomonas species in ecological and agricultural fields, demonstrating their resilience and functional versatility in various environments.
Downloads
References
Agrawal, T., Kotasthane, A. S., & Kushwah, R. (2015). Genotypic and phenotypic diversity of polyhydroxybutyrate (PHB) producing Pseudomonas putida isolates of Chhattisgarh region and assessment of its phosphate solubilizing ability. Biotechnology, 5, 45–60.
Alexander, M. (1977). Microbiology of the rhizosphere. In Introduction to Soil Microbiology (pp. 423–437). Wiley, Chichester.
Bauer, A. W. (1966). Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology, 45, 149–158.
Bergey, D. H., Hendricks, D., Holt, J. G., & Sneath, P. H. A. (1984). Bergey’s manual of systematic bacteriology (Vol. 2). Williams & Wilkins.
Blazevic, D. J., Koepcke, M. H., & Matsen, J. M. (1973). Incidence and identification of Pseudomonas fluorescens and Pseudomonas putida in the clinical laboratory. Applied Microbiology, 25, 107–110.
Bolton, H., Frederickson, J. K., & Elliott, L. F. (1992). Microbial ecology of the rhizosphere. In F. B. Metting (Ed.), Soil Microbial Ecology (pp. 27–36). Marcel Dekker.
Bossis, E., Lemanceau, P., Latour, X., & Gardan, L. (2000). The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: Current status and need for revision. Agronomie, 20, 51–63.
Curl, E. A., & Truelove, B. (1986). The Rhizosphere (pp. 9–54). Springer Verlag, New York.
Den Dooren de Jong, L. E. (1926). Bijdrage tot de kennis van het mineralisatieproces (Vol. 1, p. 200). Nijgh and van Ditmar Uitgevers-Mij, Rotterdam.
Grayston, S. J., & Campbell, C. D. (1996). Functional biodiversity of microbial communities in the rhizosphere of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree Physiology, 16, 1031–1038.
Hugh, R., & Leifson, E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. Journal of Bacteriology, 66, 24.
Jones, D. L., Nguyen, C., & Finlay, R. D. (2009). Carbon flow in the rhizosphere: Carbon trading at the soil–root interface. Plant and Soil, 321, 5–33.
Kalbe, C., Marten, P., & Berg, G. (1996). Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiological Research, 151, 433–439.
Journal of Eco-friendly Agriculture. (2025). Metabolic versatility and species identification of fluorescent Pseudomonas using carbon utilization profiles. Journal of Eco-friendly Agriculture, 20(2), 431. https://doi.org/10.48165/jefa.2025.20.2.28
Krieg, N. R., & Holt, J. G. (1984). Bergey’s manual of systematic bacteriology (Vol. 1). The William & Wilkins Co., Baltimore.
Kuijken, R. C. P., van Eeuwijk, F. A., Marcelis, L. F. M., & Bouwmeester, H. J. (2015). Root phenotyping: From component trait in the lab to breeding. Journal of Experimental Botany, 66, 5389–5401.
Larcher, M., Rapior, S., & Cleyet-Marel, J.-C. (2008). Bacteria from the rhizosphere and roots of Brassica napus influence its root growth promotion by Phyllobacterium brassicacearum. Acta Botanica Gallica, 155, 355–366.
Lemanceau, P., Corberand, T., Gardan, L., Latour, X., Laguerre, G., Boeufgras, J., et al. (1995). Effect of two plant species, flax (Linum usitatissimum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Applied and Environmental Microbiology, 61, 1004–1012.
Liu, P. (1952). Utilization of carbohydrates by Pseudomonas aeruginosa. Journal of Bacteriology, 64, 773.
Meur, S. L., Zinn, M., Egli, T., Thony-Meyer, L., & Ren, Q. (2012). Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. BMC Biotechnology, 12, 53.
Njoroge, S. M. C., Riley, M. B., & Keinath, A. P. (2008). Effect of incorporation of Brassica spp. residues on population densities of soilborne microorganisms and on damping off and Fusarium wilt of watermelon. Plant Disease, 92, 287–294.
Palleroni, N. J., Krieg, N. R., & Holt, J. G. (1984). Bergey’s manual of systematic bacteriology. Baltimore: The William & Wilkins Co.
Rovira, A. D. (1965). Plant root exudates and their influence upon soil microorganisms. In Ecology and Soil-Borne Plant Pathogens (pp. 170–186). University of California Press, Berkeley, CA.
Stanier, R. Y., Palleroni, N. J., & Doudoroff, M. (1966). The aerobic Pseudomonads: A taxonomic study. Microbiology, 43, 159–271.
Wardle, D. A. (1992). A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 67, 321–358.
Whipps, J. M., & Lynch, J. M. (1985). Energy losses by the plant in rhizodeposition. Plant Products and The New Technology, 59, 71.