Laboratory evaluation of life cycle of earthworms, Eisenia fetida on cow dung
DOI:
https://doi.org/10.48165/jefa.2025.20.2.9Keywords:
Eisenia fetida, earthworms, life cycle, clitellum, cocoonAbstract
A clean environment, crucial for human health and soil fertility, is essential for agricultural productivity. Excessive use of chemical fertilizers has degraded soil quality and posed health risks. Organic fertilizers like vermicompost, produced by the earthworm Eisenia fetida, offer a sustainable alternative by recycling organic waste and improving soil health. This study evaluated the reproductive performance and growth of E. fetida using cow dung as a substrate under laboratory conditions. Results showed clitellum development by the third week, with cocoon production starting in the sixth and ending by the twelfth week. Each worm produced an average of 9.73 ± 0.20 cocoons, with 2.60 ± 0.176 hatchlings per cocoon and a hatching success rate of 82.22 per cent. The highest individual weight recorded was 756.83 ± 23.76 mg, with a daily growth rate of 16.54 ± 0.82 mg. The study concludes that cow dung supports efficient growth and reproduction of E. fetida for vermicomposting.
Downloads
References
Alam, M. N., Jahan, M. S., Ali, M. K., Ashraf, M. A., & Islam, M. K. (2007). Effect of vermicompost and chemical fertilizers on growth, yield and yield components of potato in barind soils of Bangladesh. Journal of Applied Sciences Research, 3: 1879–1888.
Ali, S., & Kashm, M. A. (2018). Life cycle of vermicomposting earthworms Eisenia fetida and Eudrilus eugeniae under laboratory controlled condition. Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, 10: 8110–8113.
B. Das, P. K., Jena, M. K., & Mohanty, S. (2002). Online edition of India’s National Newspaper THE HIND.
Bartlett, M. D., Briones, M. J., Neilson, R., Schmidt, O., Spurgeon, D., & Creamer, R. E. (2010). A critical review of current methods in earthworm ecology: from individuals to populations. European Journal of Soil Biology, 46: 67–73.
Bhattacharjee, G., & Chaudhuri, P. S. (2002). Cocoon production, morphology, hatching pattern and fecundity in seven tropical earthworm species: A laboratory-based investigation. Journal of Biosciences, 27: 283–294.
Dar, K. A., & Senthilmurugan, S. (2022). Municipal solid waste as the prospective substrate for earthworm Eisenia fetida to convert waste into manure. International Journal of Zoology and Applied Bioscience, 7: 11–16.
E.F. Neuhauser, D.L. Kaplan, M.R. Malecki, R. Hartenstein. (1980). Materials supporting weight gain by the earthworm Eisenia foetida in waste conversion systems. Agricultural Wastes, 2: 43–60.
Edwards, C. A., & Bohlen, P. J. (1996). Biology and ecology of earthworms (Vol. 3). Springer Science & Business Media.
Gunadi, B., & Edwards, C. A. (2003). The effect of multiple applications of different organic wastes on the growth, fecundity and survival of Eisenia fetida. Pedobiologia, 47: 321–330.
Pande, H., Goswami, D., & Kaushal, B. R. (2013). The growth and reproduction of Eisenia fetida (Oligochaeta) in cow manure and field soil. Journal of Environment and Bio-Science, 27: 35–43.
Jesikha, M., & Lekeshmanaswamy, M. (2013). Effect of Pongamia leaf medium on growth of earthworm (Eudrilus eugeniae). International Journal of Science Research Publication, 3: 2250–3153.
Laucka, A., Andriukaitis, D., Valinevicius, A., Navikas, D., Zilys, M., Markevicius, V., Klimenta, D., Sotner, R., & Jerabek, J. (2020). Method for volume of irregular shape pellets estimation using 2D imaging measurement. Applied Science, 10: 2650.
Lim, S. L., Wu, T. Y., Sim, E. Y. S., Lim, P. N., & Clarke, C. (2012). Biotransformation of rice husk into organic fertilizer through vermicomposting. Ecological Engineering, 41: 60–64.
Loh, T. C., Lee, Y. C., Liang, J. B., & Tan, D. (2005). Vermicomposting of cattle and goat manures by Eisenia foetida and their growth and reproduction performance. Bioresource Technology, 96: 111–114.
Matlok, N., Szostek, M., Antos, P., Gajdek, G., Gorzelany, J., Bobrecka-Jamro, D., & Balawejder, M. (2020). Effect of foliar and soil fertilization with new products based on calcinated bones on selected physiological parameters of maize plants. Applied Science, 10: 2579.
Monroy, F., Aira, M., Gago, J. Á., & Domínguez, J. (2007). Life cycle of the earthworm Octodrilus complanatus (Oligochaeta, Lumbricidae). Comptes Rendus Biologies, 330: 389–391.
Neuhauser, E. F., Hartenstein, R., & Kaplan, D. L. (1980). Growth of the earthworm Eisenia foetida in relation to population density and food rationing. Oikos, 93: 98.
Rahman, M., & Hajam, Y. A. (2024). Selection and evaluation of optimal medium for Eisenia fetida in sustainable waste recycling. Discover Animals, 1: 20.
Reinecke, A. J., & Venter, J. M. (1987). Moisture preference and growth and reproduction of the compost worm Eisenia fetida (Oligochaeta). Biology and Fertility of Soils, 3: 135–141.
Singh, J. S., & Gupta, V. K. (2018). Soil microbial biomass: A key soil driver in management of ecosystem functioning. Science of the Total Environment, 634: 497–500. https://doi.org/10.1016/j.scitotenv.2018.03.373.
Stockdale, E. A., Lampkin, N. H., Hovi, M., Keatinge, R., Lennartsson, E. K. M., Macdonald, D. W., Padel, S., Tattersall, F. H., Wolfe, M. S., & Watson, C. A. (2001). Agronomic and environmental implications of organic farming systems. Advances in Agronomy, 70: 261–327. https://doi.org/10.1016/S0065-2113(01)70007-7.
Tripathi, G., & Bhardwaj, P. (2004). Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresource Technology, 92: 275–283.
Venter, J. M., & Reinecke, A. J. (1988). The life-cycle of the compost worm. African Zoology, 23: 161–165.
Wen, B., Hu, X. Y., Liu, Y., Wang, W. S., Feng, M. H., & Shan, X. Q. (2004). The role of earthworms (Eisenia fetida) in influencing bioavailability of heavy metals in soils. Biology and Fertility of Soils, 40: 181–187.
Wimalawansa, S. A., & Wimalawansa, S. J. (2014). Impact of changing agricultural practices on human health: Chronic kidney disease of multi-factorial origin in Sri Lanka. Wudpecker Journal of Agriculture Research, 3: 110–124.
Yadav, K. D., Tare, V., & Ahammed, M. M. (2012). Integrated composting–vermicomposting process for stabilization of human faecal slurry. Ecological Engineering, 47: 24–29.