Developmental Toxicity of Monosodium Glutamate on Zebrafish Embryos
DOI:
https://doi.org/10.48165/jlas.2026.9.1.2Keywords:
Developmental delay, Monosodium Glutamate (MSG), Melanin deposition, zebrafish embryoAbstract
Monosodium glutamate (MSG) is widely used as a food additive worldwide and the safety of MSG has always been a matter of concern. This study was conducted to assess the effect of MSG on foetal development using zebrafish embryos. Zebrafish embryos were collected from the spawning group of a male: female ratio of 1:2. Fertilized embryos in the blastula stage were transferred into 24-well plates and kept at 26.5 ±1°C. MSG in the concentration of 300 mg/L, which was then serially two-fold diluted to 150 mg/L, 75 mg/L, 37.5 mg/L, 18.75 mg/L, 9.38 mg/L, 4.687 mg/L, 2.34 mg/L, was used for treatment, and the control wells contained 2mL of RO water. Observations were recorded 24, 48, 72, and 96 h post-fertilization. MSG induced toxicity, mainly delayed development, reduced melanin pigmentation, and pericardial edema in zebrafish embryos at concentrations of 100 mg/L and above. MSG caused a retarded growth from 24 h to 72 h, but growth by 96 h could recover the developmental delay. Hatching was delayed in the treatment group, and by 96h, all surviving embryos had hatched. Overall, it can be concluded that these developmental defects may be due to oxidative stress and neurotoxic effects of glutamate at concentrations above 100 mg/L. Thus, MSG is toxic to developing embryos and can delay growth and metabolism in a concentration-dependent manner.
Downloads
References
Bauer, B., Mally, A., & Liedtke, D. (2021). Zebrafish embryos and larvae as alternative animal models for toxicity testing. International Journal of Molecular Sciences, 22(24), 13417.
Belanger, S. E., Rawlings, J. M., & Carr, G. J. (2013). Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals. Environmental Toxicology and Chemistry, 32(8), 1768–1783.
Beyreuther, K., Biesalski, H. K., Fernstrom, J. D., Grimm, P., Hammes, W. P., Heinemann, U., Kempski, O., Stehle, P., Steinhart, H., & Walker, R. (2007). Consensus meeting: monosodium glutamate–an update. European Journal of Clinical Nutrition, 61(3), 304–313.
Bölükbaş, F., & Öznurlu, Y. (2023). Determining the effects of in ovo administration of monosodium glutamate on the embryonic development of brain in chickens. NeuroToxicology, 94, 87–97.
Collison, K. S., Makhoul, N. J., Zaidi, M. Z., Al-Rabiah, R., Inglis, A., Andres, B. L., Ubungen, R., Shoukri, M., & Al-Mohanna, F. A. (2012). Interactive effects of neonatal exposure to monosodium glutamate and aspartame on glucose homeostasis. Nutrition and Metabolism, 9, 1–3.
Das, D., Banerjee, A., Bhattacharjee, A., Mukherjee, S., & Maji, B. K. (2022). Dietary food additive monosodium glutamate with or without high-lipid diet induces spleen anomaly: A mechanistic approach on rat model. Open Life Sciences, 17(1), 22–31.
De Esch, C., Slieker, R., Wolterbeek, A., Woutersen, R., & de Groot, D. (2012). Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotoxicology and Teratology, 34(6), 545–553.
Hazzaa, S. M., El-Roghy, E. S., Abd Eldaim, M. A., & Elgarawany, G. E. (2020). Monosodium glutamate induces cardiac toxicity via oxidative stress, fibrosis, and P53 proapoptotic protein expression in rats. Environmental Science and Pollution Research, 27, 20014–20024.
Hill, A. J., Bello, S. M., Prasch, A. L., Peterson, R. E., & Heideman, W. (2004). Water permeability and TCDD-induced edema in zebrafish early-life stages. Toxicological Sciences, 78(1), 78–87.
Insawang, T., Selmi, C., Cha’on, U., Pethlert, S., Yongvanit, P., Areejitranusorn, P., Boonsiri, P., Khampitak, T., Tangrassameeprasert, R., Pinitsoontorn, C., & Prasongwattana, V. (2012). Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population. Nutrition and Metabolism, 9, 1–6.
Jin, E. J., & Thibaudeau, G. (1999). Effects of lithium on pigmentation in the embryonic zebrafish (Brachydanio rerio). Biochimica et Biophysica Acta, Molecular Cell Research, 1449(1), 93–99.
Jubaidi, F. F., Mathialagan, R. D., Noor, M. M., Taib, I. S., & Budin, S. B. (2019). Monosodium glutamate daily oral supplementation: Study of its effects on male reproductive system on rat model. Systems Biology in Reproductive Medicine, 65(3), 194–204.
Karlen-Amarante, M., Da Cunha, N. V., De Andrade, O., De Souza, H. C., & Martins-Pinge, M. C. (2012). Altered baroreflex and autonomic modulation in monosodium glutamate-induced hyperadipose rats. Metabolism, 61(10), 1435–1442.
Kazmi, Z., Fatima, I., Perveen, S., & Malik, S. S. (2017). Monosodium glutamate: Review on clinical reports. International Journal of Food Properties, 20(2), 1807–1815.
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253–310.
Ni, J., Wang, N., Gao, L., Li, L., Zheng, S., Liu, Y., Ozukum, M., Nikiforova, A., Zhao, G., & Song, Z. (2016). The effect of the NMDA receptor-dependent signaling pathway on cell morphology and melanosome transfer in melanocytes. Journal of Dermatological Science, 84(3), 296–304.
Niaz, K., Zaplatic, E., & Spoor, J. (2018). Extensive use of monosodium glutamate: A threat to public health? EXCLI Journal, 17, 273.
Nnadozie, J. O., Chijioke, U. O., Okafor, O. C., Olusina, D. B., Oli, A. N., Nwonu, P. C., Mbagwu, H. O., & Chijioke, C. P. (2019). Chronic toxicity of low dose monosodium glutamate in albino Wistar rats. BMC Research Notes, 12, 1–7.
Rhodes, J., Titherley, A. C., Norman, J. A., Wood, R., & Lord, D. W. (1991). A survey of the monosodium glutamate content of foods and an estimation of the dietary intake of monosodium glutamate. Food Additives and Contaminants, 8(3), 265–274.
Sheldon, A. L., & Robinson, M. B. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochemistry International, 51(6–7), 333–355.
Shosha, H. M., Ebaid, H. M., Toraih, E. A., Abdelrazek, H. M., & Elrayess, R. A. (2023). Effect of monosodium glutamate on fetal development and progesterone level in pregnant Wistar Albino rats. Environmental Science and Pollution Research, 30(17), 49779–49797.
Sugimoto, M., Yuki, M., Miyakoshi, T., & Maruko, K. (2005). The influence of long‐term chromatic adaptation on pigment cells and striped pigment patterns in the skin of the zebrafish, Danio rerio. Journal of Experimental Zoology A: Comparative Experimental Biology, 303(6), 430–440.
Suthamnatpong, N., & Ponpornpisit, A. (2017). Effects of monosodium glutamate on heartbeat and the embryonic development of zebrafish. The Thai Journal of Veterinary Medicine, 47(4), 523–530.
Toth, L., Karcsu, S., Feledi, J., & Kreutzberg, G. W. (1987). Neurotoxicity of monosodium-L-glutamate in pregnant and fetal rats. Acta Neuropathologica, 75, 16–22.
Williams, A. N., & Woessner, K. (2009). Monosodium glutamate ‘allergy’: menace or myth? Clinical & Experimental Allergy, 39(5), 640–646.
Wisenden, B. D., Paulson, D. C., & Orr, M. (2022). Zebrafish embryos hatch early in response to chemical and mechanical indicators of predation risk, resulting in underdeveloped swimming ability of hatchling larvae. Biology Open, 11(12), 059229.
Zanfirescu, A., Ungurianu, A., Tsatsakis, A. M., Nițulescu, G. M., Kouretas, D., Veskoukis, A., Tsoukalas, D., Engin, A. B., Aschner, M., & Margină, D. (2019). A review of the alleged health hazards of monosodium glutamate. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1111–1134.

