Evaluation of Jute (Corchorus olitorius): a naturalistic fiber as nesting material for home cage enrichment in laboratory mice
DOI:
https://doi.org/10.48165/jlas.2026.9.1.4Keywords:
Nesting material, enrichment, laboratory mouse, jute, coirAbstract
Environmental enrichment of home cages has a positive effect on animal wellbeing as well as the quality of research. Laboratory mice although separated from their wild ancestors still show natural instincts. It is interesting to observe whether the laboratory mice build a better complex nest with the naturalistic material in comparison to commercially available, processed or commonly used nesting material. Therefore, we have tested the nest-building characteristics of the laboratory mice provided with crinkled paper (P), jute (Corchorus olitorius) (J), coconut coir (C) or, jute-coir blend (JC). We observed that nest of mice with “J” scored higher than “JC” and “P”. Mice preferred naturalistic fibrous material above commercially available crinkled paper. It built a better stable nest using jute and preferred to stay in jute for most of the time (mainly 70% in night time and 42% in daytime) and showed very less preference for crinkled paper. The nest made out of jute was also proved to be stable for up to 14 days, suggesting its use in experiments that warrant the mice to be kept undisturbed for two weeks. Mice did not show any undesirable behaviour due to any of the nesting material used in this experiment. Jute is of low cost, easy to handle, and can be used as environmental enrichment for laboratory mice.
Downloads
References
Alwis, D. S., & Rajan, R. (2014). Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury. Frontiers in Systems Neuroscience, 8, 156. https://doi.org/10.3389/fnsys.2014.00156
Andersen, M. L., D’Almeida, V., Ko, G. M., Martins, P. J., & Tufik, S. (2016). The Health of Laboratory Animals. In Rodent Model as Tools in Ethical Biomedical Research (pp. 53–60). Springer International Publishing.
Balcombe, J. P. (2006). Laboratory environments and rodents’ behavioural needs: a review. Laboratory Animals, 40(3), 217–235. https://doi.org/10.1258/002367706777611488
Baumans, V. (2005). Environmental enrichment for laboratory rodents and rabbits: requirements of rodents, rabbits, and research. ILAR Journal, 46(2), 162–170. https://doi.org/10.1093/ilar.46.2.162
Belz, E. E., Kennell, J. S., Czambel, R. K., Rubin, R. T., & Rhodes, M. E. (2003). Environmental enrichment lowers stress-responsive hormones in singly housed male and female rats. Pharmacology, Biochemistry, and Behavior, 76(3–4), 481–486. https://doi.org/10.1016/j.pbb.2003.09.005
Burkholder, T., Foltz, C., Karlsson, E., Linton, C. G., & Smith, J. M. (2012). Health Evaluation of Experimental Laboratory Mice. Current Protocols in Mouse Biology, 2, 145–165. https://doi.org/10.1002/9780470942390.mo110217
Deacon, R. M. (2006). Assessing nest building in mice. Nature Protocols, 1(3), 1117–1119. https://doi.org/10.1038/nprot.2006.170
do Nascimento, N. R. F. (2011). Toxicological activity evaluation of Cocos nucifera L. in experimental models.
Doulames, V., Lee, S., & Shea, T. B. (2014). Environmental enrichment and social interaction improve cognitive function and decrease reactive oxidative species in normal adult mice. The International Journal of Neuroscience, 124(5), 369–376. https://doi.org/10.3109/00207454.2013.848441
Francis, D. D., Diorio, J., Plotsky, P. M., & Meaney, M. J. (2002). Environmental enrichment reverses the effects of maternal separation on stress reactivity. The Journal of Neuroscience, 22(18), 7840–7843. https://doi.org/10.1523/JNEUROSCI.22-18-07840.2002
Garner, J. P. (2005). Stereotypies and other abnormal repetitive behaviors: potential impact on validity, reliability, and replicability of scientific outcomes. ILAR Journal, 46(2), 106–117. https://doi.org/10.1093/ilar.46.2.106
Gaskill, B. N., Gordon, C. J., Pajor, E. A., Lucas, J. R., Davis, J. K., & Garner, J. P. (2012). Heat or insulation: behavioral titration of mouse preference for warmth or access to a nest. PLoS One, 7(3), e32799. https://doi.org/10.1371/journal.pone.0032799
Gaskill, B. N., Gordon, C. J., Pajor, E. A., Lucas, J. R., Davis, J. K., & Garner, J. P. (2013). Impact of nesting material on mouse body temperature and physiology. Physiology & Behavior, 110–111, 87–95. https://doi.org/10.1016/j.physbeh.2012.12.018
Górska, P. (2000). Principles in laboratory animal research for experimental purposes. Medical Science Monitor, 6(1), 171–180.
Harikrishnan, V. S., Hansen, A. K., Abelson, K. S., & Sørensen, D. B. (2018). A comparison of various methods of blood sampling in mice and rats: Effects on animal welfare. Laboratory Animals, 52(3), 253–264. https://doi.org/10.1177/0023677217741332
He, L. W., Zeng, L., Tian, N., Li, Y., He, T., Tan, D. M., Zhang, Q., & Tan, Y. (2020). Optimization of food deprivation and sucrose preference test in SD rat model undergoing chronic unpredictable mild stress. Animal Models and Experimental Medicine, 3(1), 69–78. https://doi.org/10.1002/ame2.12107
Hess, S. E., Rohr, S., Dufour, B. D., Gaskill, B. N., Pajor, E. A., & Garner, J. P. (2008). Home improvement: C57BL/6J mice given more naturalistic nesting materials build better nests. JAALAS, 47(6), 25–31.
Hockly, E., Cordery, P. M., Woodman, B., Mahal, A., van Dellen, A., Blakemore, C., Lewis, C. M., Hannan, A. J., & Bates, G. P. (2002). Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Annals of Neurology, 51(2), 235–242. https://doi.org/10.1002/ana.10094
Jirkof, P. (2014). Burrowing and nest building behavior as indicators of well-being in mice. Journal of Neuroscience Methods, 234, 139–146. https://doi.org/10.1016/j.jneumeth.2014.02.001
Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386(6624), 493–495. https://doi.org/10.1038/386493a0
Kirchner, J., Hackbarth, H., Stelzer, H. D., & Tsai, P. P. (2012). Preferences of group-housed female mice regarding structure of softwood bedding. Laboratory Animals, 46(2), 95–100. https://doi.org/10.1258/la.2011.010173
Liu, M. Y., Yin, C. Y., Zhu, L. J., Zhu, X. H., Xu, C., Luo, C. X., Chen, H., Zhu, D. Y., & Zhou, Q. G. (2018). Sucrose preference test for measurement of stress-induced anhedonia in mice. Nature Protocols, 13(7), 1686–1698. https://doi.org/10.1038/s41596-018-0011-z
Llorens-Martín, M. V., Rueda, N., Martínez-Cué, C., Torres-Alemán, I., Flórez, J., & Trejo, J. L. (2007). Increases in immature dentate neurons and decreases of immobility time after environmental enrichment. Neuroscience, 147(3), 631–638. https://doi.org/10.1016/j.neuroscience.2007.04.054
Maity, S. (2016). Jute needle punched nonwovens: Manufacturing, properties, and applications. Journal of Natural Fibers, 13(4), 383–396. https://doi.org/10.1080/15440478.2015.1029200
Martin, T. L., Balser, S. R., Young, G. S., & Lewis, S. D. (2016). Cost and effectiveness of commercial nesting substrates for Peromyscus maniculatus. JAALAS, 55(4), 412–418.
Orieke, D., Ohaeri, O. C., Ijeh, I. I., Ijioma, S. N., & Achi, N. K. (2019). Acute and sub-acute toxicity evaluation of methanolic leaf extract of Corchorus olitorius. Asian Journal of Research in Animal and Veterinary Sciences, 1(4), 297–308. https://doi.org/10.9734/AJRAVS/2018/46467
Sale, A., Berardi, N., & Maffei, L. (2009). Enrich the environment to empower the brain. Trends in Neurosciences, 32(4), 233–239. https://doi.org/10.1016/j.tins.2008.12.004
Scheggi, S., De Montis, M. G., & Gambarana, C. (2018). Making sense of rodent models of anhedonia. International Journal of Neuropsychopharmacology, 21(11), 1049–1065. https://doi.org/10.1093/ijnp/pyy083
Seibenhener, M. L., & Wooten, M. C. (2015). Open field test to measure locomotor and anxiety-like behavior in mice. JoVE, 96, e52434. https://doi.org/10.3791/52434
Slattery, D. A., & Cryan, J. F. (2012). Rat forced swim test to assess antidepressant-like activity. Nature Protocols, 7(6), 1009–1014. https://doi.org/10.1038/nprot.2012.044
Sztainberg, Y., & Chen, A. (2010). An environmental enrichment model for mice. Nature Protocols, 5(9), 1535–1539. https://doi.org/10.1038/nprot.2010.114
Toth, L. A., Kregel, K., Leon, L., & Musch, T. I. (2011). Environmental enrichment of laboratory rodents. Comparative Medicine, 61(4), 314–321.
Van de Weerd, H. A., & Baumans, V. (1995). Environmental enrichment in rodents. AWIC Resource Series, 2, 145–149.
Van de Weerd, H. A., Aarsen, E. L., Mulder, A., Kruitwagen, C. L., Hendriksen, C. F., & Baumans, V. (2002). Effects of environmental enrichment for mice: variation in experimental results. Journal of Applied Animal Welfare Science, 5(2), 87–109. https://doi.org/10.1207/S15327604JAWS0502_01
Van de Weerd, H. A., Van Loo, P. L., Van Zutphen, L. F., Koolhaas, J. M., & Baumans, V. (1997). Preferences for nesting material as enrichment. Laboratory Animals, 31(2), 133–143. https://doi.org/10.1258/002367797780600152
Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres replacing glass in composites. Composites Science and Technology, 63, 1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4
Williams, B. M., Luo, Y., Ward, C., Redd, K., Gibson, R., Kuczaj, S. A., & McCoy, J. G. (2001). Environmental enrichment: effects on spatial memory. Physiology & Behavior, 73(4), 649–658. https://doi.org/10.1016/S0031-9384(01)00543-1
Yachmenev, V., Negulescu, I., & Yan, C. (2006). Thermal insulation properties of cellulosic-based nonwoven composites. Journal of Industrial Textiles, 36(1), 73–87. https://doi.org/10.1177/1528083706066439

