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Abstract:  

In this paper, we investigate a fractional model for the COVID-19 epidemic that contains an 

antiretroviral treatment compartment. We implement novel methods to acquire effective results. 

We discuss equilibrium point, reproductive number, and sensitivity analysis. We utilize the 

Sumudu transform technique to obtain approximate solutions for the model, and we explore 

chaos control to assess stability around equilibrium points. We demonstrate the numerical 

simulations to prove the accuracy of the proposed techniques. The graphs illustrate how varying 

fractional orders impact the dynamics of each epidemiological group, revealing the memory and 

time-dependent effects on disease spread and control strategies. 
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1. Introduction

The number of infections rises rapidly as long as COVID-19 outbreaks persist. This is due to 

several features that make COVID-19 infections more complicated and provide challenges for 

managing the disease [1-3]. Oxygen therapy is also used in persons who feel suffocating. 

Immunity booster is also required for the infected, suspected, and even healthy person because if 

a person's immune system is strong then he/she can fight with any disease including COVID-19 

[4]. There are many preventive measures for COVID-19. Maintaining 1 meter or 3 feet distance 

from another person is the most important and useful preventive measure and it is known as 

social distancing. Other preventive measures include wearing a mask properly, using sanitizer, 

and washing hands for at least 20 seconds [5]. Scientists who were already working on the 

coronavirus took part in this workshop. They presented and discussed different mathematical 
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models which develop evidence. After four months the workshop gave chance to participants 

that they openly discuss issues they face in developing mathematical modeling of corona virus. 

Different mathematical models were presented but the main model was epidemiological model 

[6]. 

In [7–12], the notion of the fractional derivative is elucidated. Atangana et al. proposed [13] a 

numerical technique for investigating a nonlinear fractional differential equation.  In [14] to gain 

a better comprehension of solutions to singular fractional differential equations. In [15] discusses 

the uniqueness and the existence of positive solutions to the integral boundary value problem that 

encompasses the fractional integro-differential equation. The proposed viral outbreak [16–18] 

accurately captures the temporal trajectory of the conceptual model of COVID-19 illness. The 

evaluation of the novel coronavirus risk of transmission has been discussed by Tang et al. [19]. 

The predominant feature observed within these models pertains to their global (non-local) 

characteristics, which encompass fractional applications and are additionally addressed in [20–

23]. Many schemes have been used according to the references given above but we have used 

this scheme because this scheme is more useful and its effects have proved to be more effective 

than other schemes [24-26]. The significance of immigration and closely contacted individuals in 

managing COVID-19 is emphasized by the study [27]. It demonstrates that controlling 

incubation delays and implementing efficient control mechanisms are essential for the 

effectiveness of containment. To more accurately forecast and control the spread of disease, the 

study [28] highlights the significance of including nonlinear dynamics in epidemic models. 

The study of a fractional-order COVID-19 model innovative mathematical techniques, such as 

the Atangana-Baleanu and Caputo derivatives, to capture the dynamics of the pandemic more 

accurately. This approach not only proves the existence and uniqueness of the solutions to the 

posed problems but also takes into account memory effects which represent the modelling of the 

infection spread and the control measures such as the lockdown. The study thus brings addition 

to the theoretical knowledge on epidemic modeling and contributes to the development of 

efficient applied population health interventions. This research is a valuable resource for 

comprehending the transmission and control of the pandemic. The fractal fractional operator 

better captures complex, memory-driven dynamics, reflecting the irregular nature of real-world 

phenomena like COVID-19 spread. It more accurately models anomalous diffusion and long-

range interactions, enhancing predictive power in epidemiological modeling. Fractional models, 

in contrast to standard models, take memory effects and non-local dynamics into consideration, 

better simulating the nature of infectious diseases. Employing the Mittag-Leffler kernel in 



  

 

 

conjunction with the ABC fractional derivative within COVID-19 modeling facilitates the 

integration of memory phenomena, thereby enhancing the model's realism by accommodating 

long-term impacts. The non-singular ABC derivative yields smoother and more stable 

computational outcomes, effectively circumventing complications associated with infinite 

singularities. These methodologies provide significant flexibility in calibrating the model to align 

with empirical data, thereby augmenting the precision of forecasts. Furthermore, they effectively 

capture anomalous diffusion, which is critical for accurately depicting irregular patterns of 

infection dissemination. Consequently, this approach results in more precise and adaptable 

models suited for dynamic scenarios associated with pandemics.  

In this paper, we formulated a fractional order COVID-19 model that is based on Atangana-

Baleanu fractional derivatives and the Atangana-Toufik scheme. In Section 1, we formulate the 

introductory segment accompanied by a comprehensive literature review about COVID-19 and 

fractional calculus. Section 2 contains fundamental definitions that are useful for analyzing and 

simulating the model. In Section 3, a mathematical model of COVID-19 is presented, discussing 

the boundedness and positivity of the model. The system of solutions for the model's existence 

and uniqueness has been confirmed in Section 4 using fixed point theory and an iterative method. 

In Sect. 5 we discuss chaos control to check stability at equilibrium point. In Sect. 6, the New 

Numerical scheme is constructed with the Atangana-Toufik method for real data from Saudi 

Arabia. We detail the numerical simulation of the suggested method using real data and the 

substitution of the best-fitting parameters in section 7. In section 8, we offer the conclusions and 

opinions. 

 

2. Preliminaries  

Definition 2.1: The Atangana-Baleanu fractional-order derivative in the Liouville-Caputo sense 

is defined as specified [12]. 
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Applying the Sumudu transform (ST) to (1) yields 
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Definition 2.2: Given a function ( ), the Atangana–Baleanu [17,18] fractional integral of order 
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3. SEIQR COVID-19 Model 

This section provides an analysis of the principal group S(t), which is delineated as the 

demographic of healthy individuals who are susceptible to disease acquisition. The population 

that has been exposed or those who are infected yet not exhibiting contagious symptoms is 

designated as group E(t). The demographic that has been definitively confirmed as infected is 

symbolized by group I(t). The population under quarantine, which is segregated from the general 

public even within their domestic environments, is classified as group Q(t). The population that 

has successfully recovered is defined as group R(t), as illustrated in Fig. 1. 

 



  

 

 

Figure 1: The flowchart of COVID-19 model 

The differential equation system in [29] by applying the Atangana-Baleanu fractional derivative 

of order         (   -, into Mittag-Leffler kernel, then the system of equations becomes 
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Initial conditions associated with the system of equations ( ). We have 
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3.1 Positivity and boundedness:  

In this part, we address the boundedness and positivity of the suggested model. 

Theorem 3.1: A unique and bounded solution for the fractional order system exists in  
 . 

Proof: The solution of the mathematical model given in (  )  (  ) on the interval  (   ) can 

be subsequently, we need to prove the positive invariant in the non-negative region   
  .  We get 

from the system (  )  (  ). 
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Solutions are bounded in the feasible region and are non-negative in   
 . So, the domain   

  is a 

positively invariant set. 

Theorem 3.2:  Every model structure solution that starts in   
  has a boundary inside the region 
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Proof: From equation (10) -(14), we get  

  
     

   
     

     
   

      
   

      
   

      
    

    

After simplifying, we get 
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We have,    , and we get   ( )  0  
 

  
1, which completes the proof.  

3.2 Equilibrium Point: 

In the study [28] disease-free equilibrium points of a model (10)-(14) are the following. 
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3.3 Reproductive Number: 

The reproductive number   , is a key metric in epidemiology that indicates how contagious an 

infectious disease. 
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If        it indicates rapid disease spread, requiring immediate and effective intervention. If 

      it indicates that the disease is under control or declining, but continued monitoring and 

interventions may be necessary to maintain control. The behavior of different parameters on    

is displayed in Figure 2. 

 

             

                   Fig: (a)                                                                        Fig: (b) 



  

 

 

                      

                   Fig: (c)                                                                         Fig: (d) 

                                                        

                                                                         Fig: (e) 

Figure 2: Effect of    at different parameters 

3.4 Sensitivity Analysis: 

Sensitivity analysis in COVID-19 models provides valuable insights into how variations in 

model parameters influence epidemic dynamics. It aids in understanding the potential impact of 

different interventions, refining model predictions, and making informed decisions to manage the 

outbreak effectively. The change in various parameters is shown in Table 1 and Figure 3. 

   

  
 
      

  
 

 

  
                                                      

   

  
 
     

  
 
      

  
 

 

  
    

   

  
 
      

  
 

 

  
                                                      

   

   
 
     

  
 
  

  
    



  

 

 

   

   
 
     

  
 
  

  
                                                       

   

   
 
     

  
 
  

  
    

   

   
 
     

  
 
  

  
                                                       

   

   
 
     

  
 
     

  
 
       

  
  

  

  
    

   

   
 
     

  
 
  

  
    

Parameters Sign Values 

  + 0.999 

r + 1.312 

  + 0.999 

   + 0.624 

   + 0.711 

   + 0.284 

   + 0.062 

   - -0.990 

   +           

Table 1:  Change in parameter values 

 
Figure 3: Sensitivity indices for SEIR Model 

4. Mathematical Analysis and Analytical Solution by ABC Operator 

By using the Sumudu transform of the system of equations ( )  we get 
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By using the inverse Sumudu transform of equation (  )  we have 
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Therefore, the following is obtained. 
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Theorem 4.1: Consider a Banach space (  | |) and a self-map of X that satisfies 
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for all       and        Let W is Picard H-Stable. Suppose that in equation (  )  we get 
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Where    is the fractional Lagrange multiplier, In the same manner for E,I,R,Q. 

Theorem 4.2: Assume that K self-map is provided as 
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Similar for others.  
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Consequently, it was demonstrated that K is Picard K-stable. 

Theorem 4.3: Prove that equation (  )   has a special and unique solution. 

Proof: Let     ((   )  (   )) be the Hilbert space that is specified as 
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where the particular solutions to the system's equation are (                            

           ). Using the connection between the inner function and the norm, we can 

formulate the equation as 
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the extremely small positive five parameters (                       ) after using the topology 

idea. 
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So, the special solution is unique. 

5. Chaos Control 

In this section, we stabilize the system (5) using the linear feedback control method.  
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The Jacobian matrix J, its characteristic equation is 
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Where  
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Equations (16) exhibit asymptotic stability at equilibrium points    because each eigenvalue is 

either a complex number with a negative real component or a negative real number. 

6. New Numerical Scheme 

In the context of the Coronavirus outbreak [29], we define the Atangana-Toufik suggested 

technique described in [15] for the fractional derivative SEIQR model with equations (5). 
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As a result, integrating the above equations  
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7. Results and Discussion  

 
The COVID-19 SEIRQ fractional order model can be utilized for analysis and simulation in 

order to examine the dynamic behavior of disease transmission in society. Specifically, we 

applied the Atangana Toufik scheme and ABC with Mittag-Leffler law to the Covid-19 SEIRQ 

model, using initial conditions S(0)= 34,218,169, E(0)=       , I(0)=157, R(0)=99, 

Q(0)=1720. In [29] provides further information on the parameter values are        ,    

     ,                   ,           r=0.01,          
  ,          

  . In this 

study, a novel numerical technique for the recently established fractional differentiation has been 

proposed. By using the ABC fractional derivative, distinct fractional values are obtained for the 

numerical result based on the steady-state point. Various numerical techniques are observed to 

investigate the impact of the given time parameter on the fractional order model mechanics. The 



  

 

 

model's dynamics changed and this was revealed through simulations. The memory effects of 

nonlinear systems are also observed with the help of fractional value results. It provides a new 

approach to the targeted value to manage the disease without establishing additional criteria. 

Figures 4-8 provide graphs that tell about solutions against different fractional order  . The 

steady-state equilibrium points are bounded by the sub-compartment of the system. In Figure 4 

the susceptible population S(t) over time, showing how varying fractional orders α affect the 

model. When decrease values of α typically introduce memory effects and non-local interactions, 

implying that past states of the system impact current susceptibility levels. This is crucial in 

understanding how a susceptible individual's risk of infection fluctuates over time with fractional 

dynamics. The fractional order variation in fig 5 highlights the latency dynamics within this 

group, which can influence the timing and size of infection waves as exposed individuals 

transition to infection states at different rates based on the memory parameter α. The fractional 

order impact in fig 6 shows potential delays or accelerations in infection progression, which are 

significant for anticipating peak infection rates and managing healthcare resources. Fractional-

order variations in fig 7 illustrate how recovery dynamics evolve, potentially impacting herd 

immunity thresholds and the population’s resilience to future outbreaks. In fig 8 evaluates the 

effectiveness of quarantine measures, where different values of α reflect varying degrees of 

adherence or effectiveness in isolating infected individuals. The current non-integer-order types 

have less advantage as compared to these operators. This model was developed using data 

acquired from print or media sources regarding the causative agent and virus transmission model. 

 



  

 

 

 

Figure 4: Simulation of S(t) with fractional order 

 

 

Figure 5: Simulation of E(t) with fractional order 

 



  

 

 

 

Figure 6: Simulation of I(t) with fractional order 

 

 

Figure 7: Simulation of R(t)  with  fractional order  

 



  

 

 

 

Figure 8: Simulation of Q(t) with fractional order 

8. Conclusion  

In this article, we used the Mittag-Leffler kernel and the ABC fractional derivative to study the 

COVID-19 fractional model. The iterative approach and fixed-point theory were utilized to 

determine the existence solution of the model. Utilizing the proposed model, we were able to 

attain highly significant results. In the context of fractional calculus, non-singular and non-local 

kernels were employed to derive non-linear fractional differential equations from the derivative. 

The sick individuals received a variety of therapy approaches, such as medications, vitamins, and 

tones, which were also supplied to the uninfected individuals. According to the memory effect, 

the dynamics of the epidemiological system are shaped by the peaks and magnitudes of 

infection, which increase with the epidemic system's "memory" of previous states.  

The utilization of the Mittag-Leffler kernel in conjunction with the ABC fractional derivative 

significantly augments the modeling potential for the investigation of COVID-19 dynamics by 

providing enhanced flexibility, precision, and resilience in simulations. These methodologies 

empower researchers to gain a more profound comprehension and forecasting capability 

regarding the intricate behaviors linked to epidemic occurrences. Through the analysis of this 



  

 

 

model, we may create more accurate plans to reduce the impact of epidemics, which will 

ultimately result in the saving of lives and better community recovery. 
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