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Abstract: This work analyzes the COVID-19 fractional order SEIQRD compartmental model using the six
primary categories of the Caputo approach. Numerous conclusions have been drawn on the the solution’s
boundedness and non-negativity, as well as the existence and uniqueness of the new mod el. Our findings
reveal that the When R0 < 1, the system is locally asymptotically stable at infection-free equilibrium. We
also observed that In the absence of illness, the system is globally asymptotically stable (R of Covid 19 <1).
This study’s primary goal is to look into the dynamics of COVID-19 transmission in Italy, the nation where
the virus was initially discovered in January 2020. To account for the uncertainty arising from the limited
knowledge about the Corona virus (COVID-19), The order of fractions A fractional order was used to apply
the SEIQRD compartmental model framework. The dynamics of the equilibrium are examined using the La-
Salle invariant principle and the Routh-Hurwitz consistency criterion. Additionally, the suggested model’s
approximate solution is calculated using the fractional-order Taylor’s method. Through the comparison of
simulation results with empirical data, the model’s validity is shown. The study’s findings regarding the
impacts of using face masks showed that wearing face masks frequently can prevent the COVID-19 virus from
spreading.
Keywords: Mathematical modeling; Boundedness; Existence; Stability analysis;

1. Introduction

The coronavirus, or COVID-19, is a relatively new problem that has put the entire planet in danger. Accord-
ing to reports, its originated from Wuhan city of China [1]. In December 2019, reports of a novel coronavirus
were made for the first time. Dry cough, fever, exhaustion, and severe cases of acute respiratory syndrome
are among the symptoms of coronavirus, which manifest in two to ten days and can progress to pneumonia,
kidney failure, and even death [2]. BThe world faced an emergency as the coronavirus spread over the world
between March and April. The wet seafood market in Wuhan, China, was the site of the first documented
cases [3]. The Covid-19 pandemic’s fast and ongoing global spread continues to pose a serious challenge
to all nations. As per the World Health Organization’s (WHO) situation report-205, published on August
12, 2020, there are over 20 million COVID-19-positive cases worldwide and over 730,000 fatalities [4]. A
novel coronavirus known as The sickness is caused by the coronavirus disease (COVID-19) or severe acute
respiratory syndrome coronavirus 2 (SARSCoV-2). It is believed to have started in Wuhan, China, where it
was initially discovered in December 2019 [5]. As we can see, the vaccine was created in China, the United
States, England, and Russia. The majority of individuals on the planet are getting vaccination shots. As of
18 March 2021, at 4:53 pm CET, The World Health Organization (WHO) declared that 2,674,078 deaths and
120,915,219 confirmed cases had been registered globally. A total of 364,184,603 vaccine doses had been
delivered. Rich nations like the United States, the United Kingdom, Italy, Spain, and many others are severely
impacted; these nations account for the majority of recorded global fatalities [7]. The dynamics and behavior
of disease are understood by mathematical modeling, which is then used to develop the protocols for disease
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therapy. Numerous researchers created the COVID-19 models with this goal in mind [8,9,10,11]. In the ex-
amination of mathematical models, the reproductive number plays a significant role. Reproductive number
provides an explanation for the COVID-19 simulation’s behavior.

Numerous studies with models and estimates of the possible quantity of COVID-19 cases in a given pe-
riod of time have been reported. Ivanov [12] conducted simulations to evaluate the impact of COVID-19
on worldwide supply chains. The results showed that ongoing disruptions at different levels of the facili-
ties may play a significant role in deciding the pandemic’s aftermath. A Gaussian distribution was used in
the research by Li et al. [13] to look into the COVID-19 transmission in China’s Hubei Province. Subse-
quently, the writers offered forecasts regarding potential epidemic trends in nations like Iran, South Korea,
and Italy. The outcomes demonstrated that implementing Control methods would have a major impact on the
pandemic’s spread pace. Previous research have estimated the transmission of COVID-19 among communities
using the susceptible-infected-removed (SIR) model and its larger variations, such as numerous versions of
the extended-susceptible-infected-removed (eSIR) mathematical model [14]. Fanelli and Piazza’s mathemati-
cal model [15] was created to analyze the coronavirus outbreak in nations including China, Italy, and France.
while accounting for susceptible-infected-recovered-deaths (SIRD) shows similarities in the rates of recovery
in each of these countries. However, there was a discernible difference in the rates of infection and mortality.
Using models from the exponential smoothing family, Petropoulos and Makridakis [16] provided a logical
method for predicting the global COVID-19 pandemic’s existence. Italy has so far put in place a number of
national and local lockdown regulations in an effort to stop the virus’s spread. In view of the human-to-human
transmission and Given the asymptomatic transmission of COVID-19, it is critical to track the growth and
fall in the number of confirmed cases and make predictions about the virus’s imminent spread throughout
Italy [17].This study uses To simulate and predict COVID-19 in Italy, use the susceptible-exposed-infected-
quarantined recovered-dead (SEIQRD) model. driven by the aforementioned concerns. The particle swarm
optimization (PSO) approach has been used to identify the model’s parameters because of its high efficiency,
quick convergence, and simplicity of use [18].It is crucial to remember that the epidemic model’s state in the
classical order model is independent of its past.However, in real life, memory is essential for analyzing how
an epidemic disease spreads.A power law model was discovered to describe the intervals between a patient’s
doctor visits[19].It is important to remember that power law results in the Caputo fractional time derivative
[20].Traditional initial and boundary conditions are allowed by Caputo fractional-order derivatives when solv-
ing real-world problems. Furthermore, Caputo fractional order produces superior results than integer order
because of its nonlocal behavior and capacity for change at any given instant in time [21, 22, 23, 24, 25, 26
27].

The COVID-19 pandemic was caused by the novel coronavirus SARS-CoV-2, which has had a signifi-
cant effect on world health. economy, and cultures. Comprehending and simulating the mechanics of the
virus’s dissemination has been crucial for efficient public health measures during the crisis. In this situation,
mathematical modeling has been extremely important for both anticipating and managing the virus’s spread.

One of the innovative approaches in epidemiological modeling is the use of fractional calculus, which
offers a more nuanced and accurate representation of the dynamics of infectious diseases. In this study, we
delve into the unique mathematical framework known as the Fractional Order SEIQRD Epidemic Model
designed to capture the intricate patterns of COVID-19 transmission, and apply it to a real-world case study:
Italy.

Italy, being one of the early epicenters of the pandemic, experienced a unique trajectory of COVID-19
spread with varying degrees of intervention measures and healthcare system responses. The Fractional Order
SEIQRD model allows us to account for the fractional order derivatives, providing a more flexible and realistic
representation of the infection dynamics.

In this research, we explore the application of this advanced modeling technique to analyze and predict
the COVID-19 spreading over Italy. We think about various factors such as the effectiveness of public health
interventions, vaccination campaigns, and The appearance of novel variations to develop a comprehensive
understanding of the pandemic’s evolution in the country. By doing so, we aim to provide valuable insights into
the unique challenges faced by Italy and offer data-driven recommendations for optimizing future pandemic
response strategies.

Through this case study, we demonstrate the potential of fractional calculus in epidemiological modeling,
not only in the context of COVID-19 but also in understanding and managing future infectious disease out-

2



breaks. Our findings will strengthen our capacity to respond to future health emergencies and support ongoing
international efforts to contain the pandemic.

2. Mathematical Model for COVID-19

The findings done in served as inspiration for the mathematical model of COV ID−19 transmission devel-
oped in this paper. For the purposes of this investigation, the model will have six compartments . The symbol
N(t) represents the total population of humans to be considered, which at any one moment consists of the
compartments for susceptible (S), exposed (E), infected (I), quarantines (Q), recovered (R), and deaths (D), in
that order. We now formulate the SEIQRD model with a Caputo operator of order 0phileq1 and a fractional
order derivative. Once the basic circumstances have been finalized, the modified model can be expressed as
follows: The rates of progression from E to I are represented by e, isolation from I and recovery from I by f ,
recovery from I by g, death from COV ID−19disease in I is represented by h, recovery from Q is represented
by k, and death from Q is represented by l. The requirement rate into S is represented by a, while the contact
rate is represented by b.

FFM
0 Dξ ,φ

t S(t) = a−b(1−ξ β )S(t)E(t)− cS(t),

FFM
0 Dξ ,φ

t E(t) = b(1−ξ β )S(t)E(t)− (e+ c)E(t),

FFM
0 Dξ ,φ

t I(t) = eE(t)− ( f +g+h+ c)I(t),

FFM
0 Dξ ,φ

t Q(t) = f I(t)− (k+ l + c)Q(t), (1)

FFM
0 Dξ ,φ

t R(t) = gI(t)+ kQ(t)− cR(t),

FFM
0 Dξ ,φ

t D(t) = hI(t)+ lQ(t)− cD(t).

initial conditions,

S(0)> 0,E(0)> 0, I(0)> 0,Q(0)> 0,R(0)> 0,D(0)> 0. (2)

3. Effect of global derivative

It has long been known that the most common integral in the literature is the Riemann−Stielt jes integral,
of which the classical integral is a specific instance.If

If classical differentiation is possible for both functions, then,

Dwz(x) =
z′(x)
w′(x)

(3)

assuming that for each x in Dw′ , w′(x) 6= 0.To do this, we will use the global derivative in place of the conven-
tional derivative.

Dw(S) = a−b(1−ξ β )S(t)E(t)− cS(t),

Dw(E) = b(1−ξ β )S(t)E(t)− (e+ c)E(t),
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Dw(I) = eE(t)− ( f +g+h+ c)I(t),

Dw(Q) = f I(t)− (k+ l + c)Q(t),

Dw(R) = gI(t)+ kQ(t)− cR(t),

Dw(D) = hI(t)+ lQ(t)− cD(t).

We’ll assume that w is differentiable in order to keep things simple, therefore,

S′ = w′[a−b(1−ξ β )S(t)E(t)− cS(t)] = z1(t,S,E, I,Q,R,D),

E ′ = w′[b(1−ξ β )S(t)E(t)− (e+ c)E(t)] = z2(t,S,E, I,Q,R,D),

I′ = w′[eE(t)− ( f +g+h+ c)I(t)] = z3(t,S,E, I,Q,R,D),

Q′ = w′[ f I(t)− (k+ l + c)Q(t)] = z4(t,S,E, I,Q,R,D),

R′ = w′[gI(t)+ kQ(t)− cR(t)] = z5(t,S,E, I,Q,R,D),

D′ = w′[hI(t)+ lQ(t)+ cD(t)] = z6(t,S,E, I,Q,R,D).

We must verify the next two requirements:
Initially,

|Z1(t,S,E, I,Q,R,D)|2 = |w′[a−b(1−ξ β )S(t)E(t)− cS(t)]|2

= |w′[a−bSE +bξ βSE− cS]|2

= |w′[a+(−bE +bξ βE− c)S]|2

≤ |w′|2[a2 +(−bE +bξ βE− c)2|s|2]|

≤ |w′|2a2 +6|w|′[(b2|E|2 +b2
ξ

2
β

2|E|2 + c2)|s|2]

≤ 2 sup
t∈Dw′

|w′|2a2 +6 sup
t∈Dw′

|w|′[(b2 sup
t∈DE

|E|2 +b2
ξ

2
β

2 sup
t∈DI

|E|2 + c2)|s|2]

≤ 2‖w′‖2
∞a2 +6‖w′‖2

∞[(b
2‖E‖2

∞ +b2
ξ

2
β

2‖E‖2
∞ + c2)|S|2]

≤ 2‖w′‖2
∞a2[1+3

[b2‖E‖2
∞b2ξ 2β 2‖E‖2

∞ + c2]|S|2

a2 ]

≤ K1(1+ |S|2)
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So, we have:

3
[b2‖E‖2

∞b2ξ 2β 2‖E‖2
∞ + c2]

a2 < 1

where

K1 = 2‖w′‖2
∞a2

|Z2(lt,S,E, I,Q,R,D)|2 = |w′[b(1−ξ β )S(t)E(t)− (e+ c)E(t)]|2

= |w′[b(1−ξ β )SE− (e+ c)E]|2

≤ 2|w′|2[|b(1−ξ β )SE|2 + |− (e+ c)E|2]

≤ 2 sup
t∈Dw′

[(b2(1−ξ β )2 sup
t∈DS

|S|2 sup
t∈DE

|E|2)+(e+ c)2|E|2]

≤ 2‖w′‖2
∞[b

2(1−ξ β )2‖S‖2
∞‖E‖2

∞ +(e+ c)2|E|2]

≤ 2‖w′‖2
∞b2(1−ξ β )2‖S‖2

∞‖E‖2
∞[1+

(e+ c)2

b2(1−ξ β )2‖S‖2
∞‖I‖2

∞

|E|2]

≤ K2(1+ |E|2)

under the condition

(e+ c)2

b2(1−ξ β )2‖S‖2
∞‖E‖2

∞

< l

where

K2 = 2‖w′‖2
∞b2(1−ξ β )2‖S‖2

∞‖E‖2
∞

|Z3(t,S,E, I,Q,R,D)|2 = |w′[eE(t)− ( f +g+h+ c)I(t)]|2

≤ 2|w′|2[|eE|2 + |− ( f +g+h+ c)I|2]

≤ sup
t∈Dw′

|w′|2[e2 sup
t∈DE

|E|2 +( f +g+h+ c)2|I|2]

≤ 2‖w′‖2
∞e2‖E‖2

∞[1+
( f +g+h+ c)2

e2‖E‖2
∞

|I|2]

≤ K3(1+ |I|2)
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under the condition

( f +g+h+ c)2

e2‖E‖2
∞

< 1

where

K3 = 2‖w′‖2
∞e2‖E‖2

∞

Similarly we can find for |Z4(t,S,E, I,Q,R,D)|2, |Z5(t,S,E, I,Q,R,D)|2 and |Z6(t,S,E, I,Q,R,D)|2
Consequently, the need for linear growth is met, If

|Z1(t,S1,E, I,Q,R,D)−Z1(t,S2,E, I,Q,R,D|2 = |w′(−bE +bξ βE− c)(S1−S2)|2

≤ sup
t∈Dw′

|w′|2(3b2 sup
t∈DE

|E|2 +3b2
ξ

2
β

2 sup
t∈DE

|E|2 +3c2) sup
t∈DS

|(S1−S2)|2

≤ ‖w′‖2
∞(3b2‖E‖2

∞ +3b2
ξ

2
β

2‖E‖2
∞ +3c2)‖(S1−S2)‖2

∞

≤ K1‖(S1−S2)‖2
∞

where

K1 = ‖w′‖2
∞(3b2‖E‖2

∞ +3b2
ξ

2
β

2‖E‖2
∞ +3c2)

If

|Z2(t,S,E1, I,Q,R,D)−Z2(t,S,E2, I,Q,R,D|2 = |w′(−(e+ c))(E1−E2)|2

≤ |w′|2(2e2 +2c2)|E1−E2|2

sup
t∈DE

|Z2(t,S,E1, I,Q,R,D)−Z2(t,S,E2, I,Q,R,D|2

≤ sup
t∈Dw′

|w′|2(2e2 +2c2) sup
t∈DE

|E1−E2|2

≤ ‖w′‖2
∞(2e2 +2c2)‖E1−E2‖2

∞

≤ K2‖(E1−E2)‖2
∞

where

K2 = ‖w′‖2
∞(2e2 +2c2)

If

|Z3(t,S,E, I1,Q,R,D)−Z3(t,S,E, I2,Q,R,D|2 = |w′(−( f +g+h+ c))(I1− I2)|2

≤ sup
t∈Dw′

|w′|(4( f 2 +g2 +h2 + c2)) sup
t∈DI

|(I1− I2)|2
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≤ ‖w′‖2
∞(4( f 2 +g2 +h2 + c2))|(I1− I2)|2∞

≤ K3‖(I1− I2)‖2
∞

where

K3 = ‖w′‖2
∞4( f 2 +g2 +h2 + c2)

If

|Z4(t,S,E, I,Q1,R,D)−Z4(t,S,E, I,Q2,R,D|2 = |w′(−(k+ l + c))(Q1−Q2)|2

≤ sup
t∈Dw′

|w′|(3(k2 + l2 + c2)) sup
t∈DQ

|(Q1−Q2)|2

≤ ‖w′‖2
∞(3(k

2 + l2 + c2))‖(Q1−Q2)‖2
∞

≤ K4‖(Q1−Q2)‖2
∞

where

K4‖w′‖2
∞(3(k

2 + l2 + c2))

If

|Z5(t,S,E, I,Q,R1,D)−Z5(t,S,E, I,Q,R2,D|2 = |w′(−(c))(R1−R2)|2

≤ sup
t∈Dw′

|w′|2(c2 + ε1) sup
t∈DR

|(R1−R2)|2

‖Z5(t,S,E, I,Q,R1,D)−Z5(t,S,E, I,Q,R2,D‖2
∞

≤ ‖w′‖2
∞(c

2 + ε1)‖(R1−R2)‖2
∞

≤ K5‖(Q1−Q2)‖2
∞

where

K5 = ‖w′‖2
∞(c

2 + ε1)

If

|Z6(t,S,E, I,Q,R,D1)−Z6(t,S,E, I,Q,R,D2|2 = |w′(−(c))(D1−D2)|2

≤ sup
t∈Dw′

|w′|2(c2 + ε1) sup
t∈DD

|(D1−D2)|2

‖Z6(t,S,E, I,Q,R,D1)−Z6(t,S,E, I,Q,R,D2‖2
∞

≤ ‖w′‖2
∞(c

2 + ε2)‖(D1−D2)‖2
∞

≤ K6‖(D1−D2)‖2
∞

where

K6 = ‖w′‖2
∞(c

2 + ε2)
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4. Lyapunov First derivative

Here is the endemic equilibrium E∗ for Lyapunov function: {S,E,I,Q,R,D} L <0:
Theorem 1: The endemic points E of the SEIQRD model are globally asymptotically stable when R0 > 1.
Proof: The following can be used to express the Lyapunov function: Consequently, if we take the deriva-

tive on both sides with regard to t and after simplification, we obtain:

dL
dt

= (
S−S∗

S
)(a−b(1−ξ β )SE− cS)

+(
E−E∗

E
)(b(1−ξ β )SE− (e+ c)S)+(

I− I∗

I
)(eE− ( f +g+h+ c)I)

+(
Q−Q∗

Q
)( f I− (k+ l + c)Q)+(

R−R∗

R
)(gI + kQ− cR))+(

D−D∗

D
)

(hI + lQ− cD))

PuttingS = S−S∗,E = E−E∗, I = I− I∗,Q = Q−Q∗,R = R−R∗,D = D−D∗ leads to

dL
dt

= (
S−S∗

S
)(a−b(1−ξ β )(S−S∗)(E−E∗)− c(S−S∗))+(

E−E∗

E
)(b(1−ξ β )

(S−S∗)(E−E∗)− (e+ c)(S−S∗))+(
I− I∗

I
)(e(E−E∗)− ( f +g+h+ c)(I− I∗))

+(
Q−Q∗

Q
)( f (I− I∗)− (k+ l + c)((Q−Q∗))+(

R−R∗

R
)(g(I− I∗))+ k(Q−Q∗)

− c(R−R∗))+(
D−D∗

D
)(h(I− I∗))+ l(Q−Q∗)− c(D−D∗)) (4)

After simplification, We have::

dL
dt

= a− S∗

S
a− (S−S∗)2

S
bE +

(S−S∗)2

S
bE∗+

(S−S∗)2

S
bξ βE− (S−S∗)2

S
bξ βE∗

− (S−S∗)2

S
c+bSE− E∗

E
bS∗E∗−bξ βSE− E∗

E
bξ βS∗E∗− (E−E∗)2

E
(e+ c)+ eE+

E∗

E
eE∗− (I− I∗)2

I
( f +g+h+ c)+ f I +

Q∗

Q
f I∗− (Q−Q∗)2

Q
(k+ l + c)+gI +

R∗

R
gI∗

+ kQ+
R∗

R
kQ− (R−R∗)2

R
c+hI +

D∗

D
hI∗+ lQ+

D∗

D
Q∗− (D−D∗)2

D
c

So we may have:

dL
dt

= (Σ)− (Ω) (5)
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and

Σ = a+
(S−S∗)2

S
bE∗+

(S−S∗)2

S
bξ βE +bSE + eE +

I∗

I
eE∗

+ f I +
Q∗

Q
f I∗+gI +

R∗

R
gI∗+ kQ+

R∗

R
kQ+hI +

D∗

D
hI∗+ lQ+

D∗

D
lQ∗

and

Ω =
S∗

S
a+

(S−S∗)2

S
bE +

(S−S∗)2

S
bξ βE∗

+
(S−S∗)2

S
c+

E∗

E
bS∗E∗+bξ βSE +

E∗

E
bξ βS∗E∗+

(E−E∗)2

E
(e+ c)

+
(I− I∗)2

I
( f +g+h+ c)+

(Q−Q∗)2

Q
(k+ l + c)+

(R−R∗)2

R
c+

(D−D∗)2

D
c

It is concluded that (Σ)< (Ω) this yields (dL
dt )< 0; however when S = S∗;E = E∗; I = I∗;Q = Q∗;R = R∗;D =

D∗

0 = (Σ)− (Ω)⇒ (
dL
dt

) = 0 (6)

So,

{(S∗,E∗, I∗,Q∗,R∗,D∗) ∈ Γ :
dL
dt

= 0} (7)

According to Lasalles invariance system is globally asymptotically stable.

5. Second derivative with Lyapunov function

It should be highlighted that while a Lyapunov function’s sign can help explain its stability, a function’s
variabilities cannot be completely understood by examining its first derivative alone. We utilize second deriva-
tive as:

dL̇
dt

=
d
dt
[{(1− S∗

S
)Ṡ]+ (1− E∗

E
)Ė +(1− I∗

I
)İ +(1− Q∗

Q
)Q̇+

(1− R∗

R
)Ṙ+(1− D∗

D
)Ḋ}

= (
Ṡ
S
)2S∗+(

Ė
E
)2E∗+(

İ
I
)2I∗+(

Q̇
Q
)2Q∗+(

Ṙ
R
)2R∗+(

Ḋ
D
)2D∗+(1− S∗

S
)S̈

+[(1− E∗

E
)]× Ë +[(1− I∗

I
)]× Ï +(1− Q∗

Q
)Q̈+[(1− R∗

R
)]× R̈+(1− D∗

D
)D̈

here

S̈ = a−b(1−ξ β )(ṠE +SĖ)− cṠ,

Ë = b(1−ξ β )(ṠE +SĖ)− (e+ c)Ė,
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Ï = eĖ− ( f +g+h+ c)İ,

Q̈ = f İ− (k+ l + c)Q̇,

R̈ = gİ + kQ̇− cṘ,

D̈ = hİ + lQ̇− cḊ.

then we have

dL̇
dt

= (
Ṡ
S
)2S∗+(

Ė
E
)2E∗+(

İ
I
)2I∗+(

Q̇
Q
)2Q∗+(

Ṙ
R
)2R∗+(

Ḋ
D
)2D∗+(1− S∗

S
)

(a−b(1−ξ β )(ṠE +SĖ)− cṠ)+(1− E∗

E
)(b(1−ξ β )(ṠE +SĖ)− (e+ c)Ė)

+(1− I∗

I
)(eĖ− ( f +g+h+ c)İ)+(1− Q∗

Q
)( f İ− (k+ l + c)Q̇)+(1− R∗

R
)

+(gİ + kQ̇− cṘ)s(1− D∗

D
)(hİ + lQ̇− cḊ)

and

d2L
dt2 = ˙

∏(S,E, I,Q,R,D)−a(1− S∗

S
)−b(1− S∗

S
)(ṠE +SĖ)+bξ β (1− S∗

S
)

(ṠE +SĖ)− c(1− S∗

S
)Ṡ+b(1− S∗

S
)(ṠE +SĖ)−bξ β (1− E∗

E
)(ṠE +SĖ)−

(e+ c)(1− E∗

E
)Ė + e(1− I∗

I
)Ė− ( f +g+h+ c)(1− I∗

I
)İ + f (1− Q∗

Q
)İ− (k+

l + c)(1− Q∗

Q
)Q̇+g(1− R∗

R
)İ + k(1− R∗

R
)Q̇− c(1− R∗

R
)Ṙ+h(1− D∗

D
)İ + l(1− D∗

D
)

Q̇− c(1− D∗

D
)Ḋ

We replace Ṡ(t); Ė(t); İ(t); Q̇(t); Ṙ(t); Ḋ(t) by their derivative values, we can get:

d2L
dt2 = ˙

∏(S,E, I,Q,R,D)−a(1− S∗

S
)−b(1− S∗

S
)((a−b(1−ξ β )SE− cS)I+

+S(eE− ( f +g+h+ c)I))+bξ β (1− S∗

S
)((a−b(1−ξ β )SE− cS)I+

+S(eE− ( f +g+h+ c)I))− c(1− S∗

S
)(a−b(1−ξ β )SE− cS)+b(1− E∗

E
)

10



((a−b(1−ξ β )SE− cS)I +S(eE− ( f +g+h+ c)I))−bξ β (1− E∗

E
)

((a−b(1−ξ β )SE− cS)I +S(eE− ( f +g+h+ c)I))− (e+ c)(1− E∗

E
)

(b(1−ξ β )SE− (e+ c)E)− e(1− I∗

I
)(b(1−ξ β )SE− (e+ c)E)− ( f +g+h+ c)

(1− I∗

I
)(eE− ( f +g+h+ c)I)+ f (1− Q∗

Q
)(eE− ( f +g+h+ c)I)

− (k+ l + c)(1− Q∗

Q
)( f I− (k+ l + c)Q)+g(1− R∗

R
)

(eE− ( f +g+h+ c)I)+ k(1− R∗

R
)( f I− (k+ l + c)Q)− c(1− R∗

R
)

(gI + kQ− cR)+h(1− D∗

D
)(eE− ( f +g+h+ c)I)+ l(1− D∗

D
)( f I−

(k+ l + c)Q)− c(1− D∗

D
)(hI + lQ− cD) (8)

for simplicity we can write

d2L
dt2 = Ω1−Ω2 (9)

d2L
dt2 = ˙

∏(S,E, I,Q,R,D)−abI +b2SI2−b2
ξ βSI2−bcSI +a

S∗

S
bI

−b2 S∗

S
SI2 +b2

ξ β
S∗

S
SI2 +bc

S∗

S
SI−bcSE +b( f +g+h+ c)SI +bc

S∗

S
SE

−b( f +g+h+ c)
S∗

S
SI−abξ β I +b2

ξ βSI2−bcξ βSI−abξ β
S∗

S
I−b2

ξ β
S∗

S
SI2

−b2
ξ

2
β

2 S∗

S
SI2 +bcξ β

S∗

S
SI +bcξ β

S∗

S
SI−bξ β ( f +g+h+ c)SI +bcξ β

S∗

S
SI

+bξ β ( f +g+h+ c)
S∗

S
SI−ac+bcSI−bcξ βSI + c2S+ac

S∗

S
−bc

S∗

S
SI +bc

ξ β
S∗

S
SI− c2 S∗

S
S+ab−b2SI2 +b2

ξ
2
β

2SI2−bcSI−ab
E∗

E
+b2 E∗

E
SI2−b2

ξ
2
β

2

E∗

E
SI2 +bc

E∗

E
SI +beSE−b( f +g+h+ c)SI−be

E∗

E
SE +b( f +g+h+ c)

E∗

E
SI
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−abξ β I−b2
ξ βSI2−b2

ξ
2
β

2SI2 +bcξ βSI +abξ β
E∗

E
I +b2

ξ β
E∗

E
SI2 +b2

ξ
2
β

2

E∗

E
SI2−bcξ β

E∗

E
SI−beξ βSE +bξ β ( f +g+h+ c)SI +beξ β

E∗

E
SE−bξ β ( f

+g+h+ c)
E∗

E
SI−b(e+ c)SI +bξ β (e+ c)SI +(e+ c)2E +b(e+ c)

E∗

E
SI +bξ

β (e+ c)
E∗

E
SI− (e+ c)2 E∗

E
E−beSI +beξ βSI + e(e+ c)E +be

I∗

I
SI

−beξ β
I∗

I
SI− e(e+ c)

I∗

I
E− e( f +g+h+ c)E +( f +g+h+ c)2I

+ e( f +g+h+ c)
I∗

I
E− ( f +g+h+ c)2 I∗

I
I + e f E− f ( f +g+h+ c)I− e f

Q∗

Q
E

+ f ( f +g+h+ c)
Q∗

Q
I− f (k+ l + c)I +(k+ l + c)2Q+ f (k+ l + c)

Q∗

Q
I− (k

+ l + c)2 Q∗

Q
Q+ egE−g( f +g+h+ c)I− eg

R∗

R
E +g( f +g+h+ c)

R∗

R
I + f kI

− k(k+ l + c)Q− f k
R∗

R
I + k(k+ l + c)

R∗

R
Q− cgI− ckQ+ c2R+ cg

R∗

R
I + ck

R∗

R
Q

− c2 R∗

R
R+ ehE−h( f +g+h+ c)I− eh

D∗

D
E +h( f +g+h+ c)D∗DI + f lI− l(k

+ l + c)Q− f l
D∗

D
I + l(k+ l + c)

D∗

D
Q− chI− clQ+ c2D+ ch

D∗

D
I + cl

D∗

D
Q− c2 D∗

D
D

where

Ω1 =
˙

∏(S,E, I,Q,R,D)+b2SI2 +a
S∗

S
bI +b2

ξ β
S∗

S
SI2 +bc

S∗

S
SI

+b( f +g+h+ c)SI +bc
S∗

S
SE +b2

ξ βSI2 +bcξ β
S∗

S
SI +bξ β ( f +g+h

+ c)
S∗

S
SI +bcSI + c2S+ac

S∗

S
+bcξ β

S∗

S
SI +ab+b2

ξ
2
β

2SI2 +b2 E∗

E
SI2

+bc
E∗

E
SI +beSE +b( f +g+h+ c)

E∗

E
SI +bcξ βSI +abξ β

E∗

E
I +b2

ξ β
E∗

E
SI2

+b2
ξ

2
β

2 E∗

E
SI2 +bξ β ( f +g+h+ c)SI +beξ β

E∗

E
SE +bξ β (e+ c)SI
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+(e+ c)2E +b(e+ c)
E∗

E
SI +bξ β (e+ c)

E∗

E
SI +beξ βSI + e(e+ c)E +be

I∗

I
SI

+( f +g+h+ c)2I + e( f +g+h+ c)
I∗

I
E + e f E + f ( f +g+h+ c)

Q∗

Q
I +(k+

l + c)2Q+ f (k+ l + c)
Q∗

Q
I + egE +g( f +g+h+ c)

R∗

R
I + f kI + k(k+ l + c)

R∗

R
Q+ c2R+ cg

R∗

R
I + ck

R∗

R
Q+ ehE +h( f +g+h+ c)D∗DI + f lI + l(k

+ l + c)
D∗

D
Q+ c2D+ ch

D∗

D
I + cl

D∗

D
Q (10)

and

Ω2 = abI +b2
ξ βSI2 +bcSI +b2 S∗

S
SI2 +bcSE +b( f +g+h+ c)

S∗

S
SI +abξ β I

+beξ βSI +abξ β
S∗

S
I +b2

ξ β
S∗

S
SI2 +b2

ξ
2
β

2 S∗

S
SI2 +bξ β ( f +g+h+ c)SI+

ac+bcξ βSI +bc
S∗

S
SI + c2 S∗

S
S+b2SI2 +bcSI +ab

E∗

E
+b2

ξ
2
β

2 E∗

E
SI2

+b( f +g+h+ c)SI +be
E∗

E
SE +abξ β I +b2

ξ βSI2 +b2
ξ

2
β

2SI2 +bcξ β
E∗

E
SI

+beξ βSE +bξ β ( f +g+h+ c)
E∗

E
SI +b(e+ c)SI +(e+ c)2 E∗

E
E +beSI +be

ξ β
I∗

I
SI +beξ β

I∗

I
SI + e(e+ c)

I∗

I
E + e( f +g+h+ c)E +( f +g+h+ c)2 I∗

I
I+

f ( f +g+h+ c)I + e f
Q∗

Q
E + f (k+ l + c)I +(k+ l + c)2Q+(k+ l + c)2 Q∗

Q
Q+

g( f +g+h+ c)I + eg
R∗

R
E + k(k+ l + c)Q+ f k

R∗

R
I + cgI + ckQ+ c2 R∗

R
R+h( f +g

+h+ c)I + eh
D∗

D
E + l(k+ l + c)Q+ f l

D∗

D
I + chI + clQ+ c2 D∗

D
D (11)
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6. Fractal fractional derivative

This section describes a numerical approach that uses a Newton polynomial to solve the model numeri-
cally. In this case, we apply the new differential and integral operators to the proposed model.Here, the usual
differential operator will be replaced by an operator with a Mittag-Leffler kernal. Additionally, we have:

0FFMDξ ,φ
t tS(t) = a−b(1−ξ βS(t)E(t)− cS(t),

0FFMDξ ,φ
t E(t) = b(1−ξ βS(t)E(t)− (e+ c)E(t),

0FFMDξ ,φ
t I(t) = eE(t)− ( f +g+h+ c)I(t),

0FFMDξ ,φ
t Q(t) = f I(t)− (k+ l + c)Q(t),

0FFMDξ ,φ
t R(t) = gI(t)+ kQ(t)− cR(t),

0FFMDξ ,φ
t D(t) = hI(t)+ lQ(t)− cD(t).

For simplicity, we express the following equation as follows:

S1(t,S,M) = a−b(1−ξ βS(t)E(t)− cS(t),

E1(t,S,M) = b(1−ξ βS(t)E(t)− (e+ c)E(t),

I1(t,S,M) = eE(t)− ( f +g+h+ c)I(t),

Q1(t,S,E, I,Q,R,D) = f I(t)− (k+ l + c)Q(t),

R1(t,S,M) = gI(t)+ kQ(t)− cR(t),

D1(t,S,M) = hI(t)+ lQ(t)− cD(t).

where M = E, I,Q,R,D and ollowing the use of the Mittag-Leffler kernal with the fractal-fraction integral, we
have

S(tς +1) =
φ(1−ξ )

AB(φ)
tφ−1
ς S1(tς ,S(tς ),G)

φξ

AB(ξ )Γ(ξ )
Σ

ς

ν=2

∫ tν+1

tν
S1(t,S,M)τφ−1(tς+1−π)φ−1dη

Where G=E(tς ), I(tς ),Q(tς ),R(tς ),D(tς ) and Similarly, we may derive for E(tς +1), I(tς +1),Q(tς +1),R(tς +
1),D(tς +1)

Now, Newton polynomial is substituted into equations, we get results as.
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S(ς+1) =
φ(1−ξ )

AB(φ)
tφ−1
ς S1(tς ,S(tς ),G)+

φξ

AB(ξ )Γ(ξ )

Σ
ς

ν=2S1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)tφ−1
χ−2×

∫ tχ+1

tχ
(tς+1−η)ξ−1dη+

φξ

AB(ξ )Γ(ξ )
Σ

ς

χ=2
1
ςt
[tφ−1

χ−1S1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)− tφ−1
χ−2

S1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)]×
∫ tχ+1

tχ
(η− tχ−2)(tς+1−η)ξ−1dη+

φξ

AB(ξ )Γ(ξ )
Σ

ς

χ=2
1

2ςt2 [t
φ−1
χ S1(tχ ,Sχ ,Eχ , Iχ ,Qχ ,Rχ ,Dχ)−2tφ−1

χ−1

S1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)+
∫ tχ+1

tχ
tφ−1
χ−2S1(tχ−2,Sχ−2,Eχ−2,

Iχ−2,Qχ−2,Rχ−2,Dχ−2)]×
∫ tχ+1

tχ
(η− tχ−2)(η− tχ−1)(tς+1−η)ξ−1dη ,

E(ς+1) =
φ(1−ξ )

AB(φ)
tφ−1
ς E1(tς ,S(tς ),G)+

φξ

AB(ξ )Γ(ξ )

Σ
ς

χ=2E1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)tφ−1
χ−2×

∫ tχ+1

tχ
(tς+1−η)ξ−1dη

+
φξ

AB(ξ )Γ(ξ )
Σ

ς

χ=2 +
1
ςt
[tφ−1

χ−1E1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)− tφ−1
χ−2

E1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)]×
∫ tχ+1

tχ
(η− tχ−2)(tς+1−η)ξ−1dη+

φξ

AB(ξ )Γ(ξ )
Σ

ς

χ=2
1

2ςt2 [t
φ−1
χ E1(tχ ,Sχ ,Eχ , Iχ ,Qχ ,Rχ ,Dχ)−2tφ−1

χ−1

E1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)+
∫ tχ+1

tχ
tφ−1
χ−2E1(tχ−2,Sχ−2,Eχ−2,

Iχ−2,Qχ−2,Rχ−2,Dχ−2)]×
∫ tχ+1

tχ
(η− tχ−2)(η− tχ−1)(tς+1−η)ξ−1dη ,

I(ς+1) =
φ(1−ξ )

AB(φ)
tφ−1
ς I1(tς ,S(tς ),G)+

φξ

AB(ξ )Γ(ξ )
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Σ
ς

χ=2I1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)tφ−1
χ−2×

∫ tχ+1

tχ
(tς+1−η)ξ−1dη+

φξ

AB(ξ )Γ(ξ )
Σ

ς

χ=2
1
ςt
[tφ−1

χ−1I1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)− tφ−1
χ−2

I1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)]×
∫ tχ+1

tχ
(η− tχ−2)(tς+1−η)ξ−1dη+

φξ

AB(ξ )Γ(ξ )
Σ

ς

χ=2
1

2ςt2 [t
φ−1
χ I1(tχ ,Sχ ,Eχ , Iχ ,Qχ ,Rχ ,Dχ)−2tφ−1

χ−1

I1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)+
∫ tχ+1

tχ
tφ−1
χ−2I1(tχ−2,Sχ−2,Eχ−2,

Iχ−2,Qχ−2,Rχ−2,Dχ−2)]×
∫ tχ+1

tχ
(η− tχ−2)(η− tχ−1)(tς+1−η)ξ−1dη ,

Q(ς+1) =
φ(1−ξ )

AB(φ)
tφ−1
ς Q1(tς ,S(tς ),G)+

φξ

AB(ξ )Γ(ξ )

Σ
ς

χ=2Q1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)tφ−1
χ−2×

∫ tχ+1

tχ
(tς+1−η)ξ−1dη

+
φξ

AB(ξ )Γ(ξ )
Σ

ς

χ=2
1
ςt
[tφ−1

χ−1Q1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)− tφ−1
χ−2

Q1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)]×
∫ tχ+1

tχ
(η− tχ−2)(tς+1−η)ξ−1dη+

φξ

AB(ξ )Γ(ξ )
Σ

ς

χ=2
1

2ςt2 [t
φ−1
χ Q1(tχ ,Sχ ,Eχ , Iχ ,Qχ ,Rχ ,Dχ)−2tφ−1

χ−1

Q1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)+
∫ tχ+1

tχ
tφ−1
χ−2S1(tχ−2,Sχ−2,Eχ−2,

Iχ−2,Qχ−2,Rχ−2,Dχ−2)]×
∫ tχ+1

tχ
(η− tχ−2)(η− tχ−1)(tς+1−η)ξ−1dη ,

R(ς+1) =
φ(1−ξ )

AB(φ)
tφ−1
ς R1(tς ,S(tς ),G)+

φξ

AB(ξ )Γ(ξ )

Σ
ς

χ=2R1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)tφ−1
χ−2×

∫ tχ+1

tχ
(tς+1−η)ξ−1dη+
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φξ

AB(ξ )Γ(ξ )
Σ

ς

χ=2
1
ςt
[tφ−1

χ−1R1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)− tφ−1
χ−2

R1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)]×
∫ tχ+1

tχ
(η− tχ−2)(tς+1−η)ξ−1dη+

φξ

AB(ξ )Γ(ξ )
Σ

ς

χ=2
1

2ςt2 [t
φ−1
χ R1(tχ ,Sχ ,Eχ , Iχ ,Qχ ,Rχ ,Dχ)−2tφ−1

χ−1

R1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)+
∫ tχ+1

tχ
tφ−1
χ−2R1(tχ−2,Sχ−2,Eχ−2,

Iχ−2,Qχ−2,Rχ−2,Dχ−2)]×
∫ tχ+1

tχ
(η− tχ−2)(η− tχ−1)(tς+1−η)ξ−1dη ,

D(ς+1) =
φ(1−ξ )

AB(φ)
tφ−1
ς D1(tς ,S(tς ),G)+

φξ

AB(ξ )Γ(ξ )

Σ
ς

χ=2D1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)tφ−1
χ−2×

∫ tχ+1

tχ
(tς+1−η)ξ−1dη+

φξ

AB(ξ )Γ(ξ )
Σ

ς

χ=2
1
ςt
[tφ−1

χ−1D1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)− tφ−1
χ−2

D1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)]×
∫ tχ+1

tχ
(η− tχ−2)(tς+1−η)ξ−1dη+

φξ

AB(ξ )Γ(ξ )
Σ

ς

χ=2
1

2ςt2 [t
φ−1
χ D1(tχ ,Sχ ,Eχ , Iχ ,Qχ ,Rχ ,Dχ)−2tφ−1

χ−1

D1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)+
∫ tχ+1

tχ
tφ−1
χ−2D1(tχ−2,Sχ−2,Eχ−2,

Iχ−2,Qχ−2,Rχ−2,Dχ−2)]×
∫ tχ+1

tχ
(η− tχ−2)(η− tχ−1)(tς+1−η)ξ−1dη .

Solving for the integral in the previous equation, we can carry out the following calculations and we get:

S(ς+1) =
φ(1−ξ )

AB(φ)
tφ−1
ς S1(tς ,S(tς ),G)

+
ξ (ςt)ξ

AB(ξ )Γ(ξ +1)
Σ

ς

χ=2tφ−1
χ−2S1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)

× [(ς −χ +1)ξ − (ς −χ)ξ ]+
ξ (ςt)ξ

AB(ξ )Γ(ξ +2)
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Σ
ς

χ=2[t
φ−1
χ−1S1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)

− tφ−1
χ−2S1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)]

× [(ς −χ +1)ξ (ς −χ +3+2ξ )− (ς −χ)ξ (ς −χ +3+3ξ )]+
ξ (ςt)ξ

AB(ξ )Γ(ξ +3)

Σ
ς

χ=2[t
φ−1
χ S1(tχ ,Sχ ,Eχ , Iχ ,Qχ ,Rχ ,Dχ)

−2tφ−1
χ−1S1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)

+ tφ−1
χ−2S1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)](P+H),

E(ς+1) =
φ(1−ξ )

AB(φ)
tφ−1
ς E1(tς ,S(tς ),G)

+
ξ (ςt)ξ

AB(ξ )Γ(ξ +1)
Σ

ς

χ=2tφ−1
χ−2E1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)

× [(ς −χ +1)ξ − (ς −χ)ξ ]+
ξ (ςt)ξ

AB(ξ )Γ(ξ +2)

Σ
ς

χ=2[t
φ−1
χ−1E1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)

− tφ−1
χ−2E1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)]

× [(ς −χ +1)ξ (ς −χ +3+2ξ )− (ς −χ)ξ (ς −χ +3+3ξ )]+
ξ (ςt)ξ

AB(ξ )Γ(ξ +3)

Σ
ς

χ=2[t
φ−1
χ E1(tχ ,Sχ ,Eχ , Iχ ,Qχ ,Rχ ,Dχ)

−2tφ−1
χ−1E1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)

+ tφ−1
χ−2E1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)](P+H),

I(ς+1) =
φ(1−ξ )

AB(φ)
tφ−1
ς I1(tς ,S(tς ),G)

+
ξ (ςt)ξ

AB(ξ )Γ(ξ +1)
Σ

ς

χ=2tφ−1
χ−2I1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)
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× [(ς −χ +1)ξ − (ς −χ)ξ ]+
ξ (ςt)ξ

AB(ξ )Γ(ξ +2)

Σ
ς

χ=2[t
φ−1
χ−1I1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)

− tφ−1
χ−2I1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)]

× [(ς −χ +1)ξ (ς −χ +3+2ξ )− (ς −χ)ξ (ς −χ +3+3ξ )]+
ξ (ςt)ξ

AB(ξ )Γ(ξ +3)

Σ
ς

χ=2[t
φ−1
χ I1(tχ ,Sχ ,Eχ , Iχ ,Qχ ,Rχ ,Dχ)

−2tφ−1
χ−1I1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)

+ tφ−1
χ−2I1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)](P+H),

Q(ς+1) =
φ(1−ξ )

AB(φ)
tφ−1
ς Q1(tς ,S(tς ),G)

+
ξ (ςt)ξ

AB(ξ )Γ(ξ +1)
Σ

ς

χ=2tφ−1
χ−2Q1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)

× [(ς −χ +1)ξ − (ς −χ)ξ ]+
ξ (ςt)ξ

AB(ξ )Γ(ξ +2)

Σ
ς

χ=2[t
φ−1
χ−1Q1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)

− tφ−1
χ−2Q1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)]

× [(ς −χ +1)ξ (ς −χ +3+2ξ )− (ς −χ)ξ (ς −χ +3+3ξ )]+
ξ (ςt)ξ

AB(ξ )Γ(ξ +3)

Σ
ς

χ=2[t
φ−1
χ Q1(tχ ,Sχ ,Eχ , Iχ ,Qχ ,Rχ ,Dχ)

−2tφ−1
χ−1Q1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)

+ tφ−1
χ−2Q1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)](P+H),

R(ς+1) =
φ(1−ξ )

AB(φ)
tφ−1
ς R1(tς ,G)
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+
ξ (ςt)ξ

AB(ξ )Γ(ξ +1)
Σ

ς

χ=2tφ−1
χ−2R1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)

× [(ς −χ +1)ξ − (ς −χ)ξ ]+
ξ (ςt)ξ

AB(ξ )Γ(ξ +2)

Σ
ς

χ=2[t
φ−1
χ−1R1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)

− tφ−1
χ−2R1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)]

× [(ς −χ +1)ξ (ς −χ +3+2ξ )− (ς −χ)ξ (ς −χ +3+3ξ )]+
ξ (ςt)ξ

AB(ξ )Γ(ξ +3)

Σ
ς

χ=2[t
φ−1
χ R1(tχ ,Sχ ,Eχ , Iχ ,Qχ ,Rχ ,Dχ)

−2tφ−1
χ−1R1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)

+ tφ−1
χ−2R1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)](P+H),

D(ς+1) =
φ(1−ξ )

AB(φ)
tφ−1
ς D1(tς ,S(tς ),G)

+
ξ (ςt)ξ

AB(ξ )Γ(ξ +1)
Σ

ς

χ=2tφ−1
χ−2D1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)

× [(ς −χ +1)ξ − (ς −χ)ξ ]+
ξ (ςt)ξ

AB(ξ )Γ(ξ +2)

Σ
ς

χ=2[t
φ−1
χ−1D1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)

− tφ−1
χ−2D1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)]

× [(ς −χ +1)ξ (ς −χ +3+2ξ )− (ς −χ)ξ (ς −χ +3+3ξ )]+
ξ (ςt)ξ

AB(ξ )Γ(ξ +3)

Σ
ς

χ=2[t
φ−1
χ D1(tχ ,Sχ ,Eχ , Iχ ,Qχ ,Rχ ,Dχ)

−2tφ−1
χ−1D1(tχ−1,Sχ−1,Eχ−1, Iχ−1,Qχ−1,Rχ−1,Dχ−1)

+ tφ−1
χ−2D1(tχ−2,Sχ−2,Eχ−2, Iχ−2,Qχ−2,Rχ−2,Dχ−2)](P+H).
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7. Simulation

A mathematical analysis of citrus bacterial infection is presented, and by using non-integer parametric
values, compelling results are obtained. By reducing the fractional values, the answer for PS, PE , PI , PR,
Sv, and Iv, in figures 2-7 approaches the desired value. The numerical simulation for the fractional order
citrus bacterial infection model is found using MATLAB code. The system’s initial values are PS(0) = 0.70,
PE(0) = 0.55, PI(0) = 0.43, PR(0) = 0.68, Sv(0) = 0.70 and Iv(0) = 0.52 for each of the sub-compartments.
We show the graphical representation of the citrus bacterial infection model using the suggested numerical
method in figures 27, and we compare the integer order result with the caputo fractional order result. The
dynamics of citrus plants susceptible SP and vector susceptible Sv caused by fungal and bacterial infection
are shown in Figures 2 and 6, respectively. In these scenarios, all of the compartments rises, and after some
time, they approached a steady position because to a rise in recovered. The dynamics of plants exposed PE ,
plants infected PI and plants recover PR are shown in figures 3, 4 and 5, respectively. In these scenarios,
all of the compartments rigidly sloped downward, as the recovered situation increased, the compartments
approached a stable state. Additionally, as shown in figure 7, infected vector with and without treatment
grows by decreasing the fractional values. It makes predictions on what this research will lead in the future
and how we will be able to lower the number of sick plants and infected vectors that spread throughout the
environment. When compared to traditional derivatives, the Caputo fractional operator yields better results for
all sub-compartments at fractional derivatives. It is also suggested that as fractional values are reduced, the
solutions for all compartments become more reliable and accurate.
Here, we computed theoretical results and evaluated their applicability using a sophisticated method. Figures
1-6 display the solutions for S(t), E(t), I(t), Q(t), R(t), and D(t).To bolster the validity of the theoretical
results, we provide the following examples. The parameters that the suggested system employs are as follows::
a = 1191, b = 0.98159, α = 0.1, β = 0.7, c = 0.0006, e = 0.000001, f = 0.0007, g = 0.05, h = 0.015,
k = 0.053, l = 0.012 and the following initial circumstances; S(0) > 0,E(0) > 0, I(0) > 0,Q(0) > 0,R(0) >
0,D(0)> 0.

Dimensions 0.8 and 0.6 exhibit similar behavior with negligible effects; however, reducing dimensions
yields more appropriate results, as shown in figures 2a5a and 2b5b, respectively. Using the suggested nu-
merical technique, Nonetheless, worth more than the non-integer order styles that are currently in use. The
behavior of the dynamics inside the special fractional parameters is displayed in the numerical results that are
presented. Additionally, it is noted that recovery rises by decreasing the size and fractional values, as shown in
figures 5a and 5b, respectively. It is concluded that by using combined early detection and acute and chronic
stage investigation strategies, we can regulate COVID-19.
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Figure 1: Dynamical behaviors of S(t) with different fractional order.
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Figure 2: Dynamical behaviors of I(t) with different fractional order.
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Figure 3: Dynamical behaviors of Q(t) with different fractional order.
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Figure 4: Dynamical behaviors of R(t) with different fractional order.
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Figure 5: Dynamical behaviors of D(t) with different fractional order.

8. Conclusion

We examine a fractional order COVID-19 model that includes both acute and chronic stages in this study.
For reliable insights, the Fractal-Fractional Operator (FFO) is utilized. Our inquiry explores the significant ef-
fects of the dangerous COVID-19 virus, highlighting the importance of early detection and prevention strate-
gies worldwide. We verify the established system’s stability by both quantitative and qualitative analysis,
which is essential for comprehending its dynamic behavior over time. The model’s behavior within confined
parameters is outlined using local stability analysis, which is essential to understanding epidemic dynamics.
We also look at the effectiveness of worldwide actions in reducing the spread of COVID-19 and validating
their presence.Notably, strong immune responses and a combination of treatment strategies have led to a de-
crease in the number of COVID-19-infected people. The fractal-fractional Operator (FFO) was employed by
us.maintain ongoing surveillance of viral transmission across many fractional values, producing trustworthy
and practical findings. By using MATLAB-based numerical simulations, we are able to obtain a deeper un-
derstanding of the dynamics of COVID-19 control in real-world communities. Furthermore, the generated
predictions provide a foundation for thoughtful future research,supporting the understanding of the mechanics
of COVID-19 dissemination and providing early identification procedures.
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