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Abstract: This paper presents new theorems that build upon existing research by extending the ap-
plication of the Mellin transform within the framework of fractional integral operators. Traditionally,
the Mellin transform has been a powerful tool for analyzing asymptotic behavior, scaling properties,
and integral representations of special functions. However, by incorporating fractional integral oper-
ators, its analytical flexibility is significantly enhanced, allowing for a more in-depth study of special
function properties, particularly in fractional calculus. Furthermore, the inclusion of the generalized
I-function and M-series broadens this mathematical framework by generalizing established results and
encompassing a wider class of special functions. Through their evaluation alongside fractional inte-
gral operators, this study introduces new integral representations, special cases, and applications that
have not been previously explored. This extension greatly increases the applicability of these mathe-
matical tools in diverse fields such as mathematical physics, engineering, and applied analysis, where
fractional calculus and integral transforms play a crucial role in solving complex differential equa-
tions and boundary value problems. Ultimately, these theorems not only refine existing mathematical
structures but also create new opportunities for future research on the interplay between integral trans-
forms, special functions, and fractional calculus, contributing to both theoretical progress and practical
advancements.

Keywords: M-series, I-function, Mellin transform and Fractional Integral.

1. Introduction

The study of special functions is fundamental to various branches of applied mathematics, physics
and engineering. In particular generalized series such as the M-series provide a powerful framework
for solving complex problems involving differential equations, integral equations and fractional cal-
culus. The M-series denoted as ϕ

p Mζ
q , extends classical hypergeometric functions and offers a more

comprehensive approach to generalized operational techniques and transforms [26], [4].
In this paper, we explore the significant applications of the M-series in the context of integral

transforms and generalized fractional integral operators. The M-series as expressed in the following
form serves as a sophisticated generalization that can be adapted to various functional transformations
and analytic techniques [1, 8]:

ϕ
p Mζ

q (d1, . . . ,dp;e1, . . . ,eq;z+2) =
∞

∑
k=0

(d1)k · · ·(dp)k

(e1)k · · ·(eq)k

(z+2)k√
ϕk+ζ

. (1)



In this representation, the parameters d1, . . . ,dp and e1, . . . ,eq govern the series while ϕ and ζ

introduce additional flexibility into the formulation. This generalized M-series encompasses various
classical functions as special cases and provides analytical tools for solving intricate problems in math-
ematical physics [2, 16].

The purpose of this research is to investigate the utility of the M-series in association with integral
transforms such as the Mellin transform and generalized fractional integral operators. These mathe-
matical tools are crucial for addressing a wide range of applications including physical systems, signal
processing and fluid dynamics. By leveraging the properties of the M-series, we aim to explore new
insights into how these operators can be extended and applied to more complex systems yielding novel
solutions in both theoretical and applied contexts [15, 9, 7].

Our study enhances the applicability of fractional integral operators by incorporating the general-
ized I-function and the M-series enabling the analysis of a broader class of special functions. This
development not only extends existing results but also introduces novel integral representations and
previously unexplored special cases. Compared to traditional operators. Our approach improves com-
putational efficiency by utilizing the Mellin transforms scaling properties streamlining complex in-
tegral evaluations [17, 19]. Furthermore, our findings highlight that the proposed operators have a
broader application scope particularly in solving differential equations and boundary value problems
across mathematical physics, engineering and applied analysis [25, 21].

2. Meijer G-Function as a Generalized M-Series

The generalized Meijer G-function can be expressed in the form of a hypergeometric function
extending the concept of the M-series.

2.1. Meijer G-function

Gϕ,ζ
p,q

 dp
(z+2)

eq

=
1

2πi

∮
L

√
(e1,m− s)

√
(1−d1,n + s)√

(dn+1,p− s)
√
(1− em+1,q + s)

(z+2)sds (2)

where √. is well known gamma function and 0≤ ϕ ≤ q, 0≤ ζ ≤ p , z 6= 0. The definitions of Meijer
G-function in the form of Hyper-geometric function [23], [5].

Gϕ,ζ
p,q

 dp
(z+2)

eq

=
ϕ

∑
i=1

∏
ϕ

h=1
√

eh− ei ∏
ζ

h=1
√

1−dh + ei

∏
q
h=ϕ+1

√
1− (eh− ei)∏

p
h=ζ+1

√
dh + ei

(z+2)ei

× pFq−1

 1−dp + eq

(−1)p−ϕ−ζ (z+2)
1− eq + ei

 ,
(3)

for p, q or p = q, |z+2|< 1 and

Gϕ,ζ
p,q

 dp
(z+2)

eq

=
ϕ

∑
i=1

∏
ζ

h=1
√

di−dh ∏
ϕ

h=1
√

1−di + eh

∏
q
h=ζ+1

√
1− (di−dh)∏

p
h=ϕ+1

√
di + eh

(z+2)ei−1

× pFq−1

 1−dp + eq

(−1)p−ϕ−ζ (z+2)−1

1− eq + ei

 ,
(4)

for p, q or p = q, |z+2|> 1.
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Special cases of the generalized M-series are mentioned in the following from (3):
(i) for ϕ = ζ = 1, the generalized M-series is the generalized Meijer G-function in the form of hyper-
geometric from (3)

pFq−1

 1−dp + ep

(−1)p−ϕ−ζ (z+2)
1− ep + ei

= ϕ
p Mζ

q
(
d1,d2, . . . ,dp | e1,e2, . . . ,eq | (z+2)

)
=

∞

∑
k=0

(d1)k · · ·(dp)k

(e1)k · · ·(eq)k

(z+2)k

k!

(5)

(a) After putting ϕ = ζ = 1

pFq−1

 1−dp + ep
(−1)p−1−1(z+2)

1− ep + ei

= 1
pM1

q
(
d1,d2, . . . ,dp | e1,e2, . . . ,eq | (z+2)

)
=

∞

∑
k=0

(d1)k · · ·(dp)k

(e1)k · · ·(eq)k

(z+2)k

k!

(6)

(b) When p = q = 0, ζ = 1 we have

Eϕ(z+2) = ϕ

0 M1
0(−;−;(z+2)) =

∞

∑
k=0

(z+2)k√
ϕk+1

,(ϕ > 0) (7)

where the symbol Eϕ(z+2) denotes the Mittag-Leffler function.
(c) Again, for p = q = 0, we have

Eϕ,ζ (z+2) = ϕ

0 Mζ

0 (−;−;(z+2)) =
∞

∑
k=0

(z+2)k√
ϕk+ζ

,(ϕ > 0,ζ > 0) (8)

where the symbol Eϕ,ζ (z+2) denotes the two-index Mittag-Leffler function.
(d) If we set p= q= 1, α =σ ∈C, and β1 = 1, then the generalized M-series reduces to the generalized
Mittag-Leffler function [2][25].

Eϕ,ζ (z+2) =ϕ

1 Mζ

1 (−;−;(z+2)) =
∞

∑
k=0

(σ)k

(1)k

(z+2)k√
ϕk+ζ

=
∞

∑
k=0

(σ)k√
ϕk+ζ

(z+2)k

k!
,(ϕ > 0,ζ > 0) (9)

3. Special cases of the generalized M-series

Special cases of the generalized M-series are mentioned in the following [12], [6]
Case (i): for ϕ = ζ = 1, the generalized M-series is the generalized Meijer G-function in the form of
hypergeometric form from (4)[3], [10], [18].

qFp−1

 1−di + eq

(−1)q−ϕ−ζ (z+2)−1

1−di +dp

= ϕ
p Mζ

q
(
d1,d2, . . . ,dp | e1,e2, . . . ,eq | (z+2)

)
=

∞

∑
k=0

(d1)k · · ·(dp)k

(e1)k · · ·(eq)k

(z+2)k

k!

(10)

while putting ϕ = ζ = 1 then we get,

qFp−1

 1−di + eq
(−1)q−1−1(z+2)−1

1−di +dp

= 1
pM1

q
(
d1,d2, . . . ,dp | e1,e2, . . . ,eq | (z+2)

)
=

∞

∑
k=0

(d1)k · · ·(dp)k

(e1)k · · ·(eq)k

(z+2)k

k!

(11)
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Case (ii): When we set p = q = 0, ζ = 1, the resulting equation is equivalent to the previously ref-
erenced equation, presumably labeled as (7). which denotes the Mittag-Leffler function. Case (iii):
When we set p = q = 0, the resulting equation is equivalent to the previously referenced equation,
presumably labeled as (8). Which denotes the Mittag-Leffler function.
Case (iv): When we set p = q = 0, the resulting equation is equivalent to the previously referenced
equation, presumably labeled as (9). which denotes the Mittag-Leffler function.

4. The Generalized Fractional Integral Operators

Now, we recall the definition of generalized fractional integral operators involving the I-function.
The new generalized fractional integral operators, involving the I-function as the kernel [14], [13]

Pψ,ξ
0,w;r[ f (w)] = 2hrw−ψ−rξ−1

∫ w

0
tψ(wr− tr)ξ × Iδ ,ℵ

pi,qi;r

[
ρU
∣∣∣∣(a j,α j)1,ℵ;(a ji,α ji)ℵ+1;pi

(b j,β j)1,δ ;(a ji,β ji)δ+1;qi

]
f (t)dt (12)

where h > 0,

U =

(
tr

wr

)τ(
1− tr

wr

)v

(13)

and

V =

(
wr

tr

)τ(
1− wr

tr

)v

(14)

The sufficient conditions for mathematical operators refers to the rules or criteria that,

(i)1≤ p,q < ∞, p−1 +q−1 = 1;

(ii)R
(

2µ + rτ

(
b j
β j

))
>−q−1;

R
(

2ξ + rτ

(
b j
β j

))
>−q−1;

R
(

2ω +ξ + rτ

(
b j
β j

))
>−p−1; j = 1,2...,n

(iii) f (x) ∈ Lp(0,∞);
(iv)|argρ| ≤ π

Θ

2 ,Θ > 0

(15)

Θ =
ℵ

∑
j=1

(αi)+
δ

∑
j=1

(βi)− max
1≤i≤r

[
pi

∑
j=ℵ+1

(αi)+
qi

∑
j=δ+1

(βi)

]
(16)

To obtain the simplified form of Eq. (12) it is essential to analyze the integrals components and the
behavior of the function Iδ ,ℵ

pi,qi;r behaves. The simplified form of the equation is as follows:

Pψ,ξ
0,w;r[ f (w)] = 2hrw−ψ−rξ−1

∫ w

0
tψ(wr− tr)ξ Iδ ,ℵ

pi,qi;r

[
ρ

tr

wr

(
1− tr

wr

)∣∣∣∣(a j,α j)

(b j,β j)

]
f (t)dt (17)

Rearranging the powers and simplifying the above equation

w−ψ−rξ−1tψ (wr− tr)ξ = w−ψ−rξ−1tψ

[
wr
(

1−
( t

w

)r
)]ξ

(18)

Further this simplifies to:

Pψ,ξ
0,w;r[ f (w)] = 2hrw−ψ−rξ−1

∫ w

0
tψwrξ

(
1− tr

wr

)ξ

Iδ ,ℵ
pi,qi;r

[
ρ

tr

wr

(
1− tr

wr

)∣∣∣∣(a j,α j)

(b j,β j)

]
f (t)dt (19)

Factor out terms independent of t:

Pψ,ξ
0,w;r[ f (w)] = 2hrw−ψ−1

∫ w

0
tψ

(
1− tr

wr

)ξ

Iδ ,ℵ
pi,qi;r

[
ρ

tr

wr

(
1− tr

wr

)∣∣∣∣(a j,α j)

(b j,β j)

]
f (t)dt (20)
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4.1. Expansion of the Hypergeometric-Like Function

Assume the generalized hypergeometric function Iδ ,ℵ
pi,qi;r can be expanded as a series:

Iδ ,ℵ
pi,qi;r

[
ρ

tr

wr

(
1− tr

wr

)∣∣∣∣ . . .]≈ ∞

∑
n=0

cn

(
tr

wr

(
1− tr

wr

))n

(21)

Substitute this into the integral:

Pψ,ξ
0,w;r[ f (w)]≈ 2hrw−ψ−1

∫ w

0
tψ

(
1− tr

wr

)ξ ∞

∑
n=0

cn

(
tr

wr

(
1− tr

wr

))n

f (t)dt (22)

We can simplify the series expansion (leading order term n = 0)

Pψ,ξ
0,w;r[ f (w)]≈ 2hrw−ψ−1

∫ w

0
tψ

(
1− tr

wr

)ξ

f (t)dt (23)

To expand and solve the integral problem in Eq. (23), we proceed as follows: We need to analyze each
part of the integral and determine it, whether by using numerical techniques.
Consider Special Cases for Simplification To simplify the integral, assume f (t) = 1, so we get:

Pψ,ξ
0,w;r[1]≈ 2hrw−ψ−1

∫ w

0
tψ

(
1− tr

wr

)ξ

dt (24)

By Solving the Integral, the integral becomes:

I(w) =
∫ w

0
tψ

(
1− tr

wr

)ξ

dt (25)

This is a non-trivial integral that might require numerical integration or approximations like series
expansions for small or large t/w.

Approximations for Specific Cases which we use:

If t� w, the term
(

1− tr

wr

)ξ

can be expanded using a binomial expansion:

(
1− tr

wr

)ξ

≈ 1−ξ
tr

wr +O

((
tr

wr

)2
)

(26)

While Substituting this expansion into the integral gives:

I(w)≈
∫ w

0
tψ

(
1−ξ

tr

wr

)
dt =

∫ w

0
tψ dt−ξ

1
wr

∫ w

0
tψ+r dt (27)

Standard power-law integrals involve integrating expressions:∫ w

0
tψ dt =

wψ+1

ψ +1
,
∫ w

0
tψ+r dt =

wψ+r+1

ψ + r+1
(28)

while solving the above equations, the approximation becomes:

I(w)≈ wψ+1
(

1
ψ +1

−ξ
1

ψ + r+1

)
(29)
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4.2. Example Using the Beta Function and f (w) = w2

Let’s assume Iδ ,ℵ
pi,qi;r reduces to the B(a,b) Suppose we take f (w) = w2 is a simple quadratic func-

tion, ψ = 1, ζ = 1, r = 2, h = 0 while substituting in Eq. (12)

P1,1
0,w;2[w

2] = 202w−1−2−1
∫ w

0
t1(w2− t2).B(a,b)t2dt. (30)

The Beta function B(a,b) is independent of t, so it can be factored out. Now while simplify we get:

P1,1
0,w;2[w

2] = 2B(a,b)w−4
∫ w

0
t3(w2− t2)dt.

by solving integral part we get: ∫ w

0
t3(w2− t2)dt =

w6

12
Now come to final expression, where a = 8, b = 9

P1,1
0,w;2[w

2] = 2B(a,b)
w6

12
⇒ B(a,b)

6
.w2 (31)

while using the Eq. (31) we plot the graph

Figure 1: The function starts near zero at w= 0 and follows a quadratic growth reaching approximately
0.00016 at w = 10

Figure 1, the graph exhibits a smooth upward curvature characteristic of polynomial growth illus-
trating the interplay between special functions and algebraic structures. Physically, such functions are
fundamental in statistical mechanics, probability distributions and combinatorial analysis where they
influence normalization factors and scaling behavior. This visualization highlights the Beta functions
role in shaping polynomial dependencies offering valuable insights into applied mathematical model-
ing.

Pφ ,ξ
w,∞;r[ f (w)] = 2hrwω

∫
∞

w
t−ω−rξ−1(tr−wr)ξ × Iδ ,ℵ

pi,qi;r

[
ρV
∣∣∣∣(a j,α j)1,ℵ;(a ji,α ji)ℵ+1;pi

(b j,β j)1,δ ;(a ji,β ji)δ+1;qi

]
f (t)dt (32)

Substituting this Eq. (32) expression for Pψ,ξ
0,w;r[ f (w)], we get approximate solution: The equation is

written as:

Pφ ,ζ
w,∞;r[1]≈ 2hrwω

∫
∞

w
t−w−1

(
1− wr

tr

)ξ

dt

6



Where (Pφ ,ζ
w,∞;r[1]) is some form of generalized function, likely dependent on parameters (φ) and

(ζ ). (2hrwω) is an algebraic prefactor. Expression of the integral .

∫
∞

w
t−w−1

(
1− wr

tr

)ξ

dt

This looks complex, but simplify it by applying the Substitution method:
If the variables (w) or (t) have specific known values, try substituting them in. Asymptotic

Pψ,ξ
0,w;r[ f (w)]≈ 2hrw−ψ−1

(
wψ+1

ψ +1
−ξ

wψ+1

ψ + r+1

)
Simplifying:

Pψ,ξ
0,w;r[ f (w)]≈ 2hr

(
1

ψ +1
−ξ

1
ψ + r+1

)
Assuming approximation ( f (t) = 1).

Pψ,ξ
0,w;r[1]≈ 2hr

(
1

ψ +1
−ξ

1
ψ + r+1

)

I(w)≈ wψ+1
(

1
ψ +1

−ξ
1

ψ + r+1

)
Now while solving the equation above, we get: To solve the given integral:

I(w) =
∫

∞

w
t−w−1

(
1− wr

tr

)ξ

dt

5. Analysis and Evaluation of the Integral

In this section, we focus on the integral part and solve it for specific or general values of the
parameters (w,r,ξ ). The integral under consideration is of the form:

I(w) =
∫

∞

w
t−w−1

(
1− wr

tr

)ξ

dt (33)

This integral has a power-law term (t−w−1) and a more complex term (
(

1− wr

tr

)ξ

). Then change
of variable

Let’s a substitution to simplify the powers of (t). Let we see:

u =
t
w
⇒ t = uw ⇒ dt = wdu (34)

Thus, the integral becomes:

I(w) =
∫

∞

1
(uw)−w−1

(
1− 1

ur

)ξ

wdu (35)

Simplifying the powers of (w) and (u):

I(w) = w−w
∫

∞

1
u−w−1

(
1− 1

ur

)ξ

du (36)

Special cases and approximations
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Case 1: Small (r) and (ξ = 1)
When (ξ = 1), the integral simplifies to:

I(w) = w−w
∫

∞

1
u−w−1

(
1− 1

ur

)
du (37)

This can be split into two parts:

I(w) = w−w
(∫

∞

1
u−w−1 du− 1

wr

∫
∞

1
u−w−r−1 du

)
(38)

The integrals are standard and evaluate as follows:∫
∞

1
u−w−1 du =

1
w∫

∞

1
u−w−r−1 du =

1
w+ r

Thus, the integral becomes:

I(w) = w−w
(

1
w
− 1

wr(w+ r)

)
(39)

Case 2 : General (ξ )
For a general (ξ ), this integral is more difficult to solve analytically. However, it can be approxi-

mated for large (t) (or equivalently large (u)). For large (u):(
1− 1

ur

)ξ

≈ 1− ξ

ur (40)

This approximation leads to:

I(w)≈ w−w
∫

∞

1
u−w−1

(
1− ξ

ur

)
du (41)

This gives a similar structure to Case 1, with corrections depending on (ξ ).
Final expression, after simplification, for (ξ = 1), the result is approximately:

I(w)≈ w−w
(

1
w
− 1

wr(w+ r)

)
(42)

For general (ξ ), the integral may not have a simple closed form, but can be approximated numeri-
cally or using series expansions.

5.1. Example with Beta function and f (w) = w2

Putting the value f (w) = w2,ω = 1,φ = 2,ζ = 2,r = 2,h = o in Eq. (32) after solving this we get
the equation:

P2,2
0,w;2[w

2] =− 13
15w

B(a,b) (43)
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Figure 2: The function approaches stability near zero for w > 1 exhibiting minimal variation beyond
this point.

Figure 2, illustrates a Beta function expression for a = 2. The curve exhibits a sharp decline for
small w before stabilizing near zero. This behavior is crucial in probability distributions, Bayesian
statistics, and statistical physics. The asymptotic nature of the function makes it relevant for modeling
decay processes and normalization in applied mathematics. This visualization highlights the Beta
function’s transformation properties and its analytical significance.
The I-function, which is a more generalized version of the Fox H-function, was introduced by Saxena
et al. [21]. It is defined using a contour integral of the Mellin-Barnes type. This type of integral is used
in complex analysis and involves integrating along a specific contour in the complex plane:[24], [20],
[22]

Iδ ,ℵ
pi,qi;r

[
(z+2)

∣∣∣∣(a j,α j)1,ℵ;(a ji,α ji)ℵ+1;pi

(b j,β j)1,δ ;(a ji,β ji)δ+1;qi

]
=

1
2π℘

∫
L
E (Θ)(z+1)H dH (44)

when f (x) given is

E (Θ) =
∏

δ
j=1
√

(b j−β jΘ)∏
ℵ
j=1
√
(1−a j +α jΘ)

∑
r
i=1 ∏

qi
j=δ+1

√
(1−b ji +β jiΘ)∏

pi
j=ℵ+1

√
(a ji−α jiΘ)

(45)

where value of 1 and δ is
pi,qi (i = 1,2, ...,r) δ ,ℵ are the integers satisfying 0 ≤ δ ≤ pi,0 ≤ℵ ≤ qi,α j,β j,α ji,β jiare the real
and positive number, and a j,b j,a ji,b ji are the complex number. L is a suitable contour of the Mellin-
Bernes type running from γ− i Ω to γ + iΩ (Ω is real in the complex ∃-plane )
for r = 1 reduces to for to Fox H -function

Iδ ,ℵ
pi,qi;r

 (a j,α j)1,ℵ; (a ji,α ji)ℵ+1;pi

(z+2)
(b j,β j)1,δ ; (a ji,β ji)δ+1;qi

=H δ ,ℵ
pi,qi;r

 (a j,α j)1,ℵ; (a ji,α ji)ℵ+1;pi

(z+2)
(b j,β j)1,δ ; (a ji,β ji)δ+1;qi


(46)
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6. Representation of the Generalized M-Series within the Framework of Generalized Fractional
Integral Operators

In this section, we derived the image formula for the generalized M-series using the generalized
fractional integral operators, expressed in terms of the I-function as the kernel.
Theorem 6.1: Let a > 0,x > 0,ϕ,ζ ,η ,∆ ∈ C,R(ζ ) > 0,R > 0,R(∆) > 0,1 ≤ p ≤ 2, then the
fractional integration Pψ,ξ

0,w;r of the product of M-L function exists under the condition p−1 +q−1

R

(
µ + rτ

(
b j

β j

))
>−q−1;R

(
ξ + rτ

(
b j

β j

))
>−q−1 (47)

then there holds the following formula,

Pψ,ξ
0,w;r

(
(tη−1)ϕ

p Mζ
q

(
ax∆ +1

))
(x) = x−η

∞

∑
k=0

(d1)k . . .(dp)k

(e1)k . . .(eq)k
(ax∆ +1)k

Γ(ϕk+ζ )

× Iδ ,ℵ+2
p+2,q+1;r


(a j,α j)1,ℵ (a ji,α ji)ℵ+1;pi

(
1− µ+η+∆k

r ,τ
)

(−ξ ,v2)

ρ (
−ξ − µ+η+∆k

r ,τ + v2
)

(b j,β j)1,δ (a ji,β ji)δ+1;qi

 .
(48)

Proof: We assume Λ to be the left-hand side of the above equation. Using the definition of the
generalized M-series and the generalized fractional integral operators Eq. (15) on the left-hand side of
the above equation, we have:

Λ = rxϕ−rζ−1
∫ x

0
tµ+η−1(xr− tr)ξ

{
1

2π℘

∫
L

ϕ(ζ )(ρU)ζ dζ

}
×

∞

∑
k=0

(d1)k · · ·(dp)k

(e1)k · · ·(eq)k

(ax∆ +1)k

Γ(ϕk+ζ )
(49)

Now by changing the order of integration, which is valid under the given theorem, we get:

Λ = rx−ϕ−rζ−1
∞

∑
k=0

(d1)k · · ·(dp)k

(e1)k · · ·(eq)k

ak

Γ(ϕk+ζ )

1
2π℘

∫
L

ρ
ζ xrϕ−rτη

ϕ(ζ ){∫ x

0
tµ+η+∆k+rτη−1

(
1− tr

xr

)ξ+vζ

dt

} (50)

Let the substitution tr

xr = B, and then t = xB
1
r in Eq. (50), we get:

Λ= xη−1
∞

∑
k=0

(d1)k · · ·(dp)k

(e1)k · · ·(eq)k

(ax∆ +1)k

Γ(ϕk+ζ )

1
2π℘

∫
L

ρ
ζ xrϕ−rτη

ϕ(ζ )

{∫ 1

0
B

µ+η+∆k
r +τζ−1(1−B)ξ+vζ dB

}
dζ

(51)
Using the definition of the well-known beta function in the inner integral, we have:

Λ = xη−1
∞

∑
k=0

(d1)k · · ·(dp)k

(e1)k · · ·(eq)k

(ax∆ +1)k

Γ(k+ζ )

1
2π℘

∫
L

ρ
ζ

ϕ(ζ )

√
µ+η+∆k

r + τζ
√

1+ξ + vζ

1+ξ +µ +η + ∆k
r +(τ + vζ )

dζ (52)

Theorem 6.2: Let a > 0,x > 0,ϕ,ζ ,η ,∆ ∈ C,R(ζ ) > 0,R > 0,R(∆) > 0,1 ≤ p ≤ 2, then the
fractional integration Pψ,ξ

0,w;r of the product of M-L function exists under the condition p−1 +q−1

then there holds the following formula,

Pφ ,ξ
x,∞;r

(
(tη−1)ϕ

p Mζ
q (

a
t∆

+1)
)
(x) = x−η

∞

∑
k=0

(d1)k . . .(dp)k

(e1)k . . .(eq)k

( a
t∆ +1)k

Γ(ϕk+ζ )

× Iδ ,ℵ
p+2,q+1;r


(a j,α j)1,ℵ (a ji,α ji)ℵ+1;pi

(
1− φ+η+∆k

r ,τ
)

(−ξ ,v2)

ρ (
−ξ − φ+η+∆k

r ,τ + v2
)

(b j,β j)1,δ (a ji,β ji)δ+1;qi

 .
(53)
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Proof: We assume Λ be one the left hand side above equation using the definition of generalized
M-series and the generalized fractional integral operators on the left-hand side of above equation, we
have

Λ2 = rxφ

∫ x

0
t−φ−η−rξ−1(xr− tr)ξ

{
1

2π℘

∫
L

ϕ(ζ )(ρV )ζ dζ

}
×

∞

∑
k=0

(d1)k...(dp)k

(e1)k...(eq)k

(( a
t∆ +1)k

Γ(ϕk+ζ )
(54)

By reversing the order of integration, which is permissible according to the given theorem, we get:

Λ2 = rxφ
∞

∑
k=0

(d1)k...(dp)k

(e1)k...(eq)k

(a)k

Γ(ϕk+ζ )

1
2π℘

∫
L

ρ
ζ xrτη

ϕ(ζ )

{∫ x

0
tµ+η+∆k+rτη−1

(
1− xr

tr

)ξ+vζ

dt

}
(55)

Let the substitution xr

tr = W and then t = x
W

1
r

in Eq. (55) we get:

Λ2 = x−η−1
∞

∑
k=0

(d1)k...(dp)k

(e1)k...(eq)k

((ax−∆)k

Γ(ϕk+ζ )

1
2π℘

∫
L

ρ
ζ

ϕ(ζ )

{∫ 1

0
B(φ+ζ+ φk

r )+τζ−1(1−B)ξ+vζ dB
}

dζ

(56)
Using the defination of the well-known beta function in the inner integral, we have:

Λ2 = x−η+rϕ−1
∞

∑
k=0

(d1)k...(dp)k

(e1)k...(eq)k

((ax−∆ +1)k

Γ(ϕk+ζ )

1
2π℘

∫
L

ρ
ζ

ϕ(ζ )

√
φ +η +∆k/r+ τζ

√
1+ξ + vζ

1+ξ +φ +η +∆k/r+(τ + vζ )
dζ

(57)
Interpreting the right hand side Eq. (57).

6.1. Special Cases:
Corollary 1. If we put ϕ = 1,ζ = 2 and p = q = 2 (Theorem 6.1, Theorem 6.2). We Obtain

following interesting results on the right, and it is known as the generalized Hypergeometric function
(G-Meijer).

Pψ,ξ
0,w;r

(
tη−1 1

2M2
2(d1 · · ·dpe1 · · ·eq;ax∆+1)

)
(x)

= xη−1
pFq

[
d1, . . . ,dp ; axξ +1
e1, . . . ,eq

]

× Iδ ,ℵ+2
p+2,q+1;r


(a j,α j)1,ℵ (a ji,α ji)ℵ+1;pi

(
1− µ+η+∆k

r ,τ
)

(−ξ ,v2)

ρ (
−ξ − µ+η+∆k

r ,τ + vv2
)

(b j,β j)1,δ (a ji,β ji)δ+1;qi

 .
(58)

Corollary 2. If we put ϕ = 1,ζ = 2 and p = q = 2 (Theorem 6.2) then we get

Pφ ,ξ
x,∞;r

(
tη−1 1

2M2
2(d1 · · ·dpe1 · · ·eq;

a
t∆

+1)
)
(x)

= xη−1
pFq

[
d1, . . . ,dp ; axξ +1
e1, . . . ,eq

]

× Iδ ,ℵ+2
p+2,q+1;r


(a j,α j)1,ℵ (a ji,α ji)ℵ+1;pi

(
1− φ+η+∆k

r ,τ
)

(−ξ ,v2)

ρ (
−ξ − φ+η+∆k

r ,τ + v2
)

(b j,β j)1,δ (a ji,β ji)δ+1;qi

 .
(59)
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Corollary 3. If we put ϕ = 1,ζ = 2 and p = q = 0 then we get:

Pψ,ξ
0,w;r

(
tη−1 1

0M2
0(−;−;ax∆+1)

)
(x) = xη−1Eϕζ (ax∆ +1)

× Iδ ,ℵ+2
p+2,q+1;r


(a j,α j)1,ℵ (a ji,α ji)ℵ+1;pi

(
1− µ+η+∆k

r ,τ
)

(−ξ ,v2)

ρ (
−ξ − µ+η+∆k

r ,τ + vv2
)

(b j,β j)1,δ (a ji,β ji)δ+1;qi

 .
(60)

Corollary 4. If we put ϕ = 1,ζ = 2 and p = q = 0 then we get:

Pφ ,ξ
x,∞;r

(
tη−1 1

0M2
0

(
d1 · · ·dp,e1 · · ·eq;

a
t∆

+1
))

(x)

= xη−1Eϕζ (ax∆ +1)

× Iδ ,ℵ+2
p+2,q+1;r


(a j,α j)1,ℵ (a ji,α ji)ℵ+1;pi

(
1− φ+η+∆k

r ,τ
)

(−ξ ,v2)

ρ (
−ξ − φ+η+∆k

r ,τ + v2
)

(b j,β j)1,δ (a ji,β ji)δ+1;qi

 .
(61)

Corollary 5. If we put p = q = 0 then we get:

Pψ,ξ
0,w;r

(
tη−1 ϕ

0 Mζ

0 (−;−;ax∆+1)
)
(x) = xη−1Eϕζ (ax∆ +1)

× Iδ ,ℵ+2
p+2,q+1;r


(a j,α j)1,ℵ (a ji,α ji)ℵ+1;pi

(
1− µ+η+∆k

r ,τ
)

(−ξ ,v2)

ρ (
−ξ − µ+η+∆k

r ,τ + vv2
)

(b j,β j)1,δ (a ji,β ji)δ+1;qi

 .
(62)

Corollary 6. If we put p = q = 0 then we get:

Pφ ,ξ
x,∞;r

(
tη−1 ϕ

0 Mζ

0

(
−;−;

a
t∆

+1
))

(x)

= xη−1Eϕζ (ax∆ +1)

× Iδ ,ℵ+2
p+2,q+1;r


(a j,α j)1,ℵ (a ji,α ji)ℵ+1;pi

(
1− φ+η+∆k

r ,τ
)

(−ξ ,v2)

ρ (
−ξ − φ+η+∆k

r ,τ + vv2
)

(b j,β j)1,δ (a ji,β ji)δ+1;qi

 .
(63)

Corollary 7. If we put p = q = 1,d1 = ϒ ∈ C and e1 = 1 then we get:

Pψ,ξ
0,w;r

(
tη−1 ϒ

1 M1
1(ϒ;1;ax∆+1)

)
(x) = xη−1Eϕζ (ax∆ +1)

× Iδ ,ℵ+2
p+2,q+1;r


(a j,α j)1,ℵ (a ji,α ji)ℵ+1;pi

(
1− µ+η+∆k

r ,τ
)

(−ξ ,v2)

ρ (
−ξ − µ+η+∆k

r ,τ + vv2
)

(b j,β j)1,δ (a ji,β ji)δ+1;qi

 .
(64)
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Corollary 8. If we put p = q = 1,d1 = ϒ ∈ C and e1 = 1 then we get:

Pφ ,ξ
x,∞;r

(
tη−1 ϕ

1 Mζ

1

(
ϒ;1;

a
t∆

+1
))

(x)

= x−ηEϕζ (ax∆ +1)

× Iδ ,ℵ+2
p+2,q+1;r


(a j,α j)1,ℵ (a ji,α ji)ℵ+1;pi

(
1− φ+η+∆k

r ,τ
)

(−ξ ,v2)

ρ (
−ξ − φ+η+∆k

r ,τ + vv2
)

(b j,β j)1,δ (a ji,β ji)δ+1;qi

 .
(65)

7. Certain integral transforms offer a valuable method for simplifying complex functions

Here in this section we will provide some very important outcomes of several theorems connected
with the transform of Mellin [11].
Defination: The Mellin transform of the is define

M [ f ;s] = f (s) =
∫

∞

0
f (t)ts−1dt; s = y+ jz ; y < y1 < y2 (66)

wherey1 and y2 depend on the function f (t) to transform s(y1,y1).
Theorem 7.1 : The Mellin transform of the (Theorem 6.1) gives the following result:

M
{

Pψ,ξ
0,w;r

(
(tη−1)ϕ

p Mζ
q

(
ax∆ +1

))
;s
}
= s−η

∞

∑
k=0

(d1)k . . .(dp)k

(e1)k . . .(eq)k
Γ(η +ξ k)
Γ(ϕk+ζ )

R(s+η−1)

× Iδ ,ℵ+2
p+2,q+1;r


(a j,α j)1,ℵ (a ji,α ji)ℵ+1;pi

(
1− µ+η+∆k

r ,τ
)

(−ξ ,v2)

ρ (
−ξ − µ+η+∆k

r ,τ + v2
)

(b j,β j)1,δ (a ji,β ji)δ+1;qi


(67)

M (tη−1;s)This integral evaluates to Γ(s+η−1) provided R(s+η−1)> 0.

7.1. Example Using a Simpler Holomorphic Function:
Consider a simpler function ( f (t) = tαe−β t), where (α) and (β ) are constants, and this function is

holomorphic (analytic) in the complex plane except possibly at singularities related to (α) and (β ).
Let’s compute the Mellin transform of this function ( f (t)):

M [tαe−β t ;s] =
∫

∞

0
tαe−β tts−1 dt =

∫
∞

0
ts+α−1e−β t dt

This integral is a standard gamma function representation:

M [tαe−β t ;s] =
Γ(s+α)

β s+α

This result is holomorphic in (s) as long as (R(s+α) > 0), meaning it is analytic (holomorphic)
in this region of the complex plane.
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Figure 3: The real component of the Mellin Transform becomes dominant and increases rapidly for
large s.

Figure 3, highlights the Mellin Transform’s exponential growth, where the real part (blue curve)
rapidly increases for larger s, emphasizing its role in asymptotic analysis. The imaginary part (red
curve) remains near zero, indicating a predominantly real-valued function. Widely applied in statistical
physics, signal processing, and probability theory. The Mellin Transform is essential for asymptotic
expansions, fractional calculus, and special function analysis. This visualization provides key insights
into the real-dominant behavior of gamma-based transforms and their dependence on s.
Theorem 7.2 : The Mellin transform of the (Theorem 6.2) gives the following result:

M
{

Pφ ,ξ
x,∞;r

(
(t−η)ϕ

p Mζ
q (

a
t∆

+1)
)

;s
}
= x−η

∞

∑
k=0

(d1)k . . .(dp)k

(e1)k . . .(eq)k
R(s−η)

Γ(ϕk+ζ )

× Iδ ,ℵ
p+2,q+1;r


(a j,α j)1,ℵ (a ji,α ji)ℵ+1;pi

(
1− φ+η+∆k

r ,τ
)

(−ξ ,v2)

ρ (
−ξ − φ+η+∆k

r ,τ + v2
)

(b j,β j)1,δ (a ji,β ji)δ+1;qi


(68)

M (t−η ;s)This integral evaluates to Γ(s−η) provided R(s−η)> 0,s > 0,s > η . [23]
Conditions for Holomorphy:

The gamma function Γ(s−η) is holomorphic (analytic) in the complex plane except at its poles,
which occur at non-positive integers of s−η . Therefore, the Mellin transform Γ(s−η) is holomorphic
in the region R(s)> η . This means the function is holomorphic wherever Γ(s−η) is defined.

Conditions for Holomorphy:
The Gamma function Γ(z) is holomorphic for all z except for non-positive integers. Thus, for

Γ(s−η) to be defined and holomorphic, we require:

R(s−η)> 0 =⇒ R(s)> η

.

7.2. Example with Specific Parameters:
Lets set η = 9. The Mellin transform of f (t) = t−9 becomes:
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M [t−9;s] = Γ(s−9)

.

Figure 4: The graph illustrates the pole structure of the gamma function featuring vertical asymptotes
at integer values of s≤ 9.

Figure 4, illustrates the complex behavior of the Mellin Transform of the Gamma function, par-
ticularly its periodic singularities. The sharp spikes occur at integer values of s, which correspond to
poles of the Gamma function. The increasing magnitude of the spikes as s increases reflects the rapid
growth of the Gamma function for large arguments.

Figure 5: The plot shows the gamma function’s pole structure with singularities at specific integer s
values.
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Figure 5, highlights the pole structure of the gamma function, with vertical spikes marking singu-
larities at integer values where the function diverges. The real part (blue curve) is dominant exhibiting
rapid growth near these poles while the imaginary part (red curve) remains small indicating the func-
tion is largely real-valued. In complex analysis and physics. The Mellin Transform plays a key role in
signal processing, quantum field theory, and asymptotic analysis. The poles are essential for contour
integration and residue calculations, making this visualization useful for understanding the gamma
functions behavior in the Mellin domain.

8. Conclusions

The study of the generalized M-series in relation to the Meijer G-function and its transformation
into the generalized Mittag-Leffler function highlights its significant role in advanced mathematical
theory. The integration of fractional integral operators further broadens its applicability, particularly
within the realm of fractional calculus. Additionally, the inclusion of the I-function enriches the an-
alytical framework by unifying and extending various special functions. The profound connection
between these functions and the Mellin transform offers deeper insights into their structural properties
and integral representations reinforcing their theoretical and computational relevance.

The use of Fourier transforms with integral operators presents both challenges and advantages
compared to the Mellin transform. One key challenge lies in the fundamental difference in their kernel
structureswhile the Mellin transform is naturally suited for power-law behaviors, the Fourier transform
emphasizes frequency components, affecting the behavior and convergence of integral operators. Ad-
ditionally, Fourier transforms may encounter issues with divergence and singularities, necessitating
careful regularization. The complexity further increases when combined with fractional integral op-
erators, making analytical solutions more challenging. However, this approach also offers significant
advantages. The Fourier transform has broad applicability in signal processing, physics, and engineer-
ing, making its integration with integral operators valuable for real-world problems. It also provides
direct spectral insights, enabling applications in wave propagation and stability analysis. Moreover,
Fourier-based integral operators offer flexibility in solving differential equations, particularly in bound-
ary value problems, where Mellin-based techniques may be less effective.
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