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Abstract:

In this paper, a fractal fractional derivative is used to examine an environmentally friendly approach
of understanding the workings of smoking in humans. We proposed a fractional differential equation
system to represent a time-fractional order smoking model with illness effects. Studies are conducted
using methodologies. Lipschitz circumstances and linear growth are utilized to demonstrate the
presence and distinction of the suggested model in relation to the impact of the global offset. It is
confirmed that the fractional order model’s solutions are bounded and positive. When conducting the
initial and subsequent derivative assessments, the Lyapunov function is employed to verify analysis of
global stability. In order to examine the influence of smoking on humans, the fractional operator is
studied. To do this, solutions are constructed applying the extended version of the Mittag-Leffler
kernel using a two-step Lagrange polynomial method. Numerical simulation is performed to see how
the fractional order smoking model behaves. Such research will aid in understanding the behavior of
smoking and in developing human defenses.
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1. Introduction

In the eleventh century, Fibonacci applied mathematics to biology for the first time, using his well-
known Fibonacci sequence to explain population growth. D Bernoulli explained the impact of smallpox
using mathematical methods. Johannes Reinke was the main user of biological mathematics in 1901.
Its goal is to model and represent biological processes mathematically. Additionally, it is employed to
identify occurrences in living things. Over the past few decades, bio maths has advanced significantly
and in the decades to come this advancement will continue. Although math has always been important.
In the field of natural science, it will soon be even more so in biology. Bio math fundamentals ought to
be taught at a young age. There aren’t many basic steps in mathematical biology. After then, anybody
can use mathematical models to investigate the biological subject in more detail [1].

Esoteric mathematics and mathematical modeling are included in the field of mathematics. With the
aid of mathematical concepts and theory, it is simple to measure the work flow procedure predictions,
and results. As a result, biologists rely heavily on mathematics today. Many talented scientists work
on mathematical modeling of the biological sciences [2]. The biological system, complex systems that



explain structural changes, and differential equations of integer order that depict their dynamics are
related to basic mathematical models. In mathematical modeling, the interdependence of parameters
is described by the nonlinearity and multi-scale behaviors [3]. Using classical derivatives, numerous
biological models have been thoroughly examined in recent decades [4]. The main issue affecting
healthy communities worldwide is smoking. Smoking affects several body organs and is the cause of
over a million deaths worldwide. For smokers, The chance of having a heart attack is 70%. More as in
contrast to non-smokers. Similarly, the incidence of lung cancer is 10% higher in smokers compared
to non-smokers. Short-term smokers’ primary bad breath is one of the side effects, high BP discolored
teeth and cough. Oral illness and stomach ulcers, heart disease,Mouth cancer and throat cancer are also
prevalent among smokers and lung cancer are the main side effects of long-term smoking that have
been reported in recent years. Additionally, smokers live between 12% and 13% years less than non-
smokers. Studied the Model of smoking connected to the fractional derivative of Caputo [5]. Smoking
will kill 10 million people worldwide, according to the WHO. The death rate is greater than that of
all other diseases. The tobacco user fourteen years earlier in life than a person who does not smoke
[6]. The primary cause of cancer and other diseases is tobacco use. In poor nations, diseases linked
to tobacco use claimed the lives of around 70% of people[7]. Smoking is a major health concern that
people today face. According to the (WHO), an assessment of the smoking pandemic, a large number
of smokers die in their prime working years [8].

Approximately 440,000 deaths in the US and 105,000 deaths in the UK are attributed to smoking-
related illnesses each year. Over 8 millions of people pass away. From the global tobacco pandemic
each year, with around 1.2 million fatalities from second hand smoke exposure, putting it among the
greatest threats to public health the world has ever faced [9]. Reducing smoking rates among individ-
uals is a goal shared by all medical professionals and researchers. To better understand the dynamics
of smoking and contribute to the decrease in the number of smokers, There are developed mathemat-
ical models in conjunction with experimental investigation. To recognize and mitigate the harm that
smoking causes to public well ness, [10] performed a processing analysis of a Partially ordered smok-
ing model utilizing an inexpensive, highly accurate cyclical method. Ucar et al. [11] investigated the
smoking model’s behavior and its implications for well-being through an extensive analysis that made
use of the Atangana-Baleanu derivative. Khan et al. [12] the application of harmonic type incidence
rate in the provided smoking model, emphasizing the thorough application of fractal and fractional
calculus to represent real-life dynamics. Melkamu and Mebrate [13] suggested a fractional smoking
model to study smoking-related difficulties in the actual world by taking into account second-hand and
third-hand smokers. Because these new definitions feature nonsingular kernels that are tailored to their
demands, they have had a significant influence.

Caputo fractional derivatives [14] and AB [15], the sole reason why the fractional derivatives have
varied from one another is that ABis determined by a power law, Fabrizio by an exponential decay
law, and Caputo by an ML law. The function of differential equations of any order is deliberated by
Bulut et al. [16]. Kilbas et al, provide an explanation of the fundamental ideas of fractional differential
equations and how to use them [17]. The model of Keller-Segel concerning a fractional derivative with
a kernel that is not singular was studied by Atangana and Koca [18]. Huang et al, have introduced
fractional logistic maps [19]. Zaman conducted research on the qualitative reaction of the dynamics
of quitting smoking [20]. Singh et al, investigation uses the quitting smoking model connected with
the Caputo fractional derivative[21]. Examined the smoking model’s connection to Caputo’s fractional
derivative [22]. Examined the best way to control the smoking models and provided a qualitative
study of the smoking dynamics [23]. An analysis of lung cancer and cigarette smoking [24]. Explain
the mathematical study of tobacco’s dynamics, including its recovery and decrease [25]. Described
the smoking-related fractional mathematical model [26]. Outlined the dynamics of smoking cessation
[27]. Investigated a fractional smoking among numerous others[28]. Interpret the mathematical system
of equations description of smoking’s global dynamics [29]. Researchers have determined the rate at
which smoking is expanding by classifying smoker. Castillo-Garrsow et al presented in 1997, a broad
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epidemic survey [30] to explain the dynamic features of the smoking cessation paradigm. Three groups
of people were assumed by the researchers to exist prospective smokers (P), smokers as of right now
(S), and former smokers (Q). They are also considered the potential effects of therapy, counseling,
relapse and peer pressure on individuals [31]. It gave rise to a brand-new group of smokers known as
Qt-smokers who briefly gave off smoking in 2008.

Presenting a dynamic interaction with an integer order and a new class of smokers that smoke oc-
casionally [32] enlarged the model [33] created a nonlinear a mathematical model for examination the
movement of smoking spread in the world. The model used Lyapunov functions are used to evalu-
ate overall steadiness, mutual occurrence of equilibrium and stability overall, [34]. Demonstrated a
smoking model that looked into the stability, best control strategy and qualitative behavior of diseases
smoking’s influence. Using the fractional Atangana-Baleanu derived [35] suggested an epidemiolog-
ical methodology to simulate the dynamics of the insurgent population and emphasized the need of
reducing radicalization and focusing on recovery rates in order to have a successful counterinsurgency
tactics. Using equilibrium stability analysis, [36] investigated how health education programs affect
the dynamics of smoking and showed how they can lower the number of smokers. A computational
representation of The topic of secondhand smoking is examined by [37]. In addition to a numeri-
cal simulation analysis of its sensitivity and stability [38]. Examined an intervention-based model of
non-integer smoking techniques that showed how effective the best control measures were at lower-
ing vulnerable individuals and smokers. Other similar models include the epidemiological smoking
model [39]. Model of vector-borne illness [40], model of invasion and spread of the tumor [41]. The
COVID-19 model of propagation delay [42], model of COVID-19 transmission [43], dynamics of TB
transmission model [44]. Relative differential is ability to control inclusions in delays [45], Hilfer
fractional differential system controllability [46] were offered in both fractional and integer order by
numerous authors.

2. Formulation of the model

This section presents the biological model of smoking. The entire people N(η) is divided into 5
classifications: smokers S(η), Infrequent smokers O(η), potential smokers P(η), and Smokers with
a temporary habit. Both permanent Qp(η) quitting and Qt(η) quitting. Hence, where η is time, can
be expressed as. The following are governing equations that are nonlinear for the smoking model (as
explained by Takasar et al., 43]): where µ is the Rate at which potential smokers are recruited, α is the
rate of successful interactions between P and S, ν is the rate of natural mortality, β1 is the Conversion
rate of O to S, β2 is the transformation rate of Qt to S, δ is the rate of smoker cessation, ε is the
disease-related death rate, and 1-γ is the rate of temporary quitting.

P′(η) = µ−αP(η)S(η)−νP(η) (1)
O′(η) = αP(η)S(η)−β1O(η)−νO(η) (2)
S′(η) = β1O(η)+β2S(η)Qt(η)− (ν +δ + ε) (3)
Q′t(η) = −β2S(η)Qt(η)+δ (1− γ)S(η)−νQt(η) (4)
Q′p(η) = γδS(η)−νQp(η). (5)

Now we changes above equation into FFM respectively,

0FFMDζ ,τ
t P′(η) = µ−αP(η)S(η)−νP(η) (6)

0FFMDζ ,τ
t O′(η) = αP(η)S(η)−β1O(η)−νO(η) (7)

0FFMDζ ,τ
t S′(η) = β1O(η)+β2S(η)Qt(η)− (ν +δ + ε) (8)

0FFMDζ ,τ
t Q′t(η) = −β2S(η)Qt(η)+δ (1− γ)S(η)−νQt(η) (9)

0FFMDζ ,τ
t Q′p(η) = γδS(η)−νQp(η), (10)
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where P(0)=ψ1, O(0)=ψ2, S(0)=ψ3, Qt(0)=ψ4 and Qp(0)=ψ5 and ψk where k = 1,2,3,4,5 are
initial state of the system of governance.
Theorem 1: Let the initial conditions be {P(0),O(0),S(0),Qt(0),QP(0)}. Then, if the solutions
{P,O,S,Qt ,QP} exist, they are all positive for all t ≥ 0.

Proof: To demonstrate why the answers are superior, let’s begin with a primitive analysis. By using
the provided method, the answers illustrate real-world problems with positive values. In this section,
we examine the conditions necessary to guarantee positive solutions from the proposed model. We will
specify the standard criteria required to achieve this.

‖a‖∞ = sup
t∈Da

|a(t)| (11)

where Da is the domain of a. Let start with the P′(η)

oFFMDζ ,τ
t P′(η) = µ−αS(η)P(η)−νP(η)

≥ −(αP‖S‖+V P)
≥ −(V +α sup

η∈DS

‖S‖)P

≥ −(V +α‖S‖∞)P

this yields

P′(η) ≥ O(0)Eζ [−
c1−τζ (V +α‖S‖∞)tζ

AB(ζ )− (1−ζ )(V +α‖S‖∞)
] (12)

c represents the time component. As a result, P′(η) is positive for every t = 0

0FFMDζ ,τ
t O′(η) = αS(η)P(η)−O(η)β1−O(η)ν

≥ −O(η)(ν +β1)

this yields

O′(η) ≥ O(0)Eζ [−
c1−τζ (ν +β1)tζ

AB(ζ )− (1−ζ )(ν +β1)
] (13)

where the time component c is. This demonstrates that O′(η) for all t = 0

0FFMDζ ,τ
t S′(η) = β1O(η)+β2S(η)Qt(η)− (δ +ν + ε)

≥ −((δ +ν + ε))S(η)

≥ −((δ +ν + ε))S(η)

this yields

S′(η) ≥ O(0)Eζ [−
c1−τζ (ν +δ + ε)tζ

AB(ζ )− (1−ζ )(ν +δ + ε)
] (14)

c represents the time component. Hence, S′(η) is positive for all t = 0

0FFMDζ ,τ
t Q′t(η) = −β2S(η)Qt(η)+δ (1− γ)S(η)−Qt(η)ν

≥ −Qt(ν +(β2S(η))

≥ −(ν +β2‖S‖)Q′t(η)

≥ −(ν +β2 sup
η∈DS

‖S‖)Q′t(η)

≥ −((ν +β2‖S‖∞)Q′t(η)
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this yields

Q′t(η) ≥ O(0)Eζ [−
c1−τζ (ν +β2‖S‖∞)tζ

AB(ζ )− (1−ζ )(ν +β2‖S‖∞)
] (15)

c represents the time component. According to this, Q′t(η) is positive for all t = 0

0FFMDζ ,τ
t Q′p(η) = γδS(η)−νQp(η)

≥ −(ν)Qp(η)

this yields

Q′p(η) ≥ O(0)Eζ [−
c1−τζ (ν)tζ

AB(ζ )− (1−ζ )(ν)
] (16)

here c is a component of time. This shows that Q′p(η) is advantageous to everyone t = 0.
Theorem 2: Models 6−10 have bounded solutions for all positive initial conditions.
Proof: Theorem 1 demonstrates that the model’s solutions are positive ∀ t ≥ 0 , and methods given

As X = P+O+S. So, we have

0FFMDζ ,τ
t X(η) = {µ−υ(X)−S(δ + ε−β2Qt)}

weobtain (17)
Ep = {P,S,O ∈ R3

+|S+O≤ X}

Further we have Xυ = Qt +Qp so we have

0FFMDζ ,τ
t Xυ = −β2SQt +δS−υ(Xυ)

After solving we get

Eυ ≤
δS−β2SQt

υ

Thus

Eυ = {Qt ,Qp ∈ R2
+|Xυ ≤

δS−β2SQt

υ
}

The solutions of the model (3.1.6)(3.1.110) are confined to region E.

E = {P,S,O,Qt ,Qp ∈ R5
+|S+O≤ X ,Xυ ≤

δS−β2SQt

υ
}

which demonstrates that under the specified initial conditions in the region, all of the solutions remain
positive invariant. E for all t = 0

Theorem 3: Apart from the initial case, the proposed plant virus model is unique and bounded in
R5
+.

Proof: Here, we used the described process. We own

0FFMDζ ,τ
t P′((η))P=0 = µ,≥ 0

0FFMDζ ,τ
t S′((η))S=0 = αPS,≥ 0

0FFMDζ ,τ
t O′((η))O=0 = β1O,≥ 0 (18)

0FFMDζ ,τ
t Q′t((η))Qt=0 = δ (1− γ)S,≥ 0

0FFMDζ ,τ
t Q′p((η))Qp=0 = γδ (S),≥ 0

If (P(0),S(0),O(0),Qt(0),Qp(0)) ∈ R5
+, then the solution cannot leave the hyperplane. This

demonstrates the positive invariant set nature of the domain R5
+.
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3. Effect of globel derivative:

It has long been established in the literature that the RiemannStieltjes integral, of which the classical
integral is a special case, is one of the most frequently encountered integrals. If

Z(x) =
∫

zdx (19)

The Riemann Stieltjes integral is

Zw(x) =
∫

z(x)dx (20)

The global derivative of z(x) with respect to w(x) is

Dwz(x) = lim
h−→0

z(x+h)− z(x)
w(x+h)−w(x)

(21)

if both function can be differentiated classically, then

Dwz(x) =
z
′
(x)

w′(x)
, (22)

providing that w′(x) 6= 0, ∀xεDg′ ’. We will apply this concept in this section to see if it affects the plant
virus model. We will accomplish this by replacing the classical derivative with worldwide derivative.

DwP = µ−αP(η)S(η)−νP(η)

DwO = αP(η)S(η)−β1O(η)−νO(η)

DwS = β1O(η)+β2S(η)Qt(η)− (ν +δ + ε) (23)

DwQt = −β2S(η)Qt(η)+δ (1− γ)S(η)−νQt(η)

DwQp = δγS(η)−νQp(η)

It will be assumed for simplicity’s sake that g is differentiable, so ,

P′ = w′[µ−αP(η)S(η)−νP(η)]

O′ = w′[αP(η)S(η)−β1O(η)−ν0(η)]

S′ = w′[β1O(η)+β2S(η)Qt(η)− (ν +δ + ε)] (24)

Q′t = w′[−β2S(η)Qt(η)+δ (1− γ)S(η)−νQt(η)]

Q′p = w′[γδS(η)−νQp(η)]
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There will be a specific procedure where the function w(η) is appropriately selected. If w(η) = ηa,a∈
R, for instance, then fractal behavior will be observed.As long as we keep in mind that

‖w′‖ ∞ = sup
η∈D′w

|w′(η)|< N (25)

The ensuing example will demonstrate that the equation system is capable of accepting a single solu-
tion.

P′ = w′[µ−αP(η)S(η)−νP(η)] = Z1(η ,P,O,S,Qt ,Qp)

O′ = w′[αP(η)S(η)−β1O(η)−ν0(η)] = Z2(η ,P,O,S,Qt ,Qp)

S′ = w′[β1O(η)+β2S(η)Qt(η)− (ν +δ + ε)] = Z3(η ,P,O,S,Qt ,Qp) (26)

Q′t = w′[−β2S(η)Qt(η)+δ (1− γ)S(η)−νQt(η)] = Z4(η ,P,O,S,Qt ,Qp)

Q′p = w′[γδS(η)−νQp(η)] = Z5(η ,P,O,S,Qt ,Qp)

In order to do this, we must confirm the next two requirements:

1.|Z(η ,P,O,S,Qt ,Qp)|2 < k(1+ |P|2), ∀P1,P2.

We have

2.‖Z(η ,P1,O,S,Qt ,Qp)−Z(η ,P2,O,S,Qt ,Qp)‖2 < k‖P1−P2‖2
∞ (27)

Initially,

|Z1(η ,P,O,S,Qt ,Qp)|2 = |w′[µ−αP(η)S(η)−νP(η)]|2

= |w′[(µ)+(−αS−ν)P]|2

≤ 2|w′|2(|µ|2 + |−αS−ν |2|P|2)

≤ 2 sup
η∈Dw′

|w′|2(µ)2 +4|w′|2((α2 sup
η∈Ds

|S|2 +ν
2)P2)

≤ 2‖w′‖2
∞(µ

2)× (1+
2((α2‖S‖2

∞ +ν2)P2)

µ2 )

≤ k1(1+ |P|2)

under the condition

2(α2‖S‖2
∞−ν2)

µ2 < 1
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where

k1 = 2‖w′‖2
∞(µ

2)

|Z2(η ,P,O,S,Qt ,Qp)|2 = |w′[αP(η)S(η)−β1O(η)−ν0(η)]|2

= |w′[(αPS)+(−β1−ν)O]|2

≤ 2|w′|2(|αPS|2 + |(−β1−ν)O|2|O|2)

≤ 2‖w′‖2
∞(α

2‖P‖2
∞‖S‖2

∞)× (1+
2(β 2

1 +ν2)O2

(α2‖P‖2
∞‖S‖2

∞)
)

≤ k2(1+ |O|2)

under the condition

2(β 2
1 +ν2)O2

(α2‖P‖2
∞‖S‖2

∞)
)< 1

where

k2 = 2‖w′‖2
∞(α

2‖P‖2
∞‖S‖2

∞)

Z3|(η ,P,O,S,Qt ,Qp)|2 = |w′[β1O(η)+β2S(η)Qt(η)− (ν +δ + ε)]|2

= |w′[(β1O+β2SQt)+ |− (ν +δ + ε)|2|S|2)]

≤ 4 sup
η∈Dw′

|w′|2(β 2
1 sup

η∈DO

|O|2 +β
2
2 sup

η∈DS

|S|2 sup
η∈DQt

|Qt |2)+2 sup
η∈Dw′

|w′|2(ν +δ + ε) sup
η∈DS

|S|2

≤ 4‖w′‖2
∞(β

1‖O‖2
∞ +β2‖S‖2

∞‖Qt‖2
∞)× (1+

1(ν +δ + ε)2|S|2

2(β 1‖O‖2
∞ +β2‖S‖2

∞‖Qt‖2
∞)

≤ k3(1+ |S|2)

under the condition

1(ν +δ + ε)2

2(β 1‖O‖2
∞ +β2‖S‖2

∞‖S‖2
∞)

< 1

where

k3 = 4‖w′‖2
∞2(β 1‖O‖2

∞ +β2‖S‖2
∞‖Qt‖2

∞)
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Z4|(η ,P,O,S,Qt ,Qp)|2 = |w′[−β2S(η)Qt(η)+δ (1− γ)S(η)−νQt(η ]|2

= |w′[(δS)+(−γδS−β2S−ν)Qt ]|2

≤ |w′|2[|(δS)|2 + |(−γδS)(−β2S−ν)|2|Qt |2]
≤ 2 sup

η∈Dw′
|w′|2(δ 2 sup

η∈DS

|S|2)+

(6 sup
η∈Dw′

|w′|2(γ2
δ

2 sup
η∈DS

|S|2)+(β 2
2 sup

η∈DS

|S|2 +ν
2)|Qt |2)

≤ 2‖w′‖2
∞δ

2|S|2∞× (1+
3(γ2δ 2|S|2∞ +β 2

2 |S|2∞ +ν2)|Qt |2

δ 2 supη∈DS
|S|2

)

≤ k4(1+ |Qt |2)

Z4(η ,P,O,S,Qt ,Qp)|2 = |w′[−β2S(η)Qt(η)+δ (1− γ)S(η)−νQt(η ]|2

= |w′[(δS)+(−γδS−β2S−ν)Qt ]|2

≤ |w′|2[|(δS)|2 + |(−γδS)(−β2S−ν)|2|Qt |2]

≤ 2 sup
η∈Dw′

|w′|2(δ 2 sup
η∈DS

|S|2)+(6 sup
η∈Dw′

|w′|2(γ2
δ

2 sup
η∈DS

|S|2)+(β 2
2 sup

η∈DS

|S|2 +ν
2)|Qt |2)

≤ 2‖w′‖2
∞δ

2|S|2∞× (1+
3(γ2δ 2|S|2∞ +β 2

2 |S|2∞ +ν2)|Qt |2

δ 2 supη∈DS
|S|2

)

≤ k4(1+ |Qt |2)

under the condition

3(γ2δ 2|S|2∞ +β 2
2 |S|2∞ +ν2)|Qt |2

δ 2 supη∈DS
|S|2

< 1

where

k4 = 2‖w′‖2
∞δ

2|S|2∞

Z5(η ,P,O,S,Qt ,Qp)|2 = |w′[γδS(η)−νQp(η)]|2

≤ 2|w′|2(|(γδS)|2 +(|−νQp|2))

≤ 2 sup
η∈Dw′

|w′|2(γ2
δ

2 sup
η∈DS

|S|2)+2 sup
η∈Dw′

|w′|2(ν2Q2
p)

≤ 2|w′|2∞(γ2
δ

2|S|2∞)× (1+
(ν2Q2

p)

γ2δ 2|S|2∞
)
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≤ k5(1+ |Qp|2)

under the condition

(ν2Q2
p)

γ2δ 2|S|2∞
< 1

where

k5 = 2|w′|2∞(γ2
δ

2|S|2∞)

Therefore, the condition for linear growth is met. Additionally, we confirm the Lipschitz condition.
if

|Z1(η ,P1,O,S,Qt ,Qp)−|Z1(η ,P2,O,S,Qt ,Qp)|2 = |w′(−αS−ν)(P1−P2)|2

|Z1(η ,P1,O,S,Qt ,Qp)−|Z1(η ,P2,O,S,Qt ,Qp)|2 ≤ |w′|2(2α
2|S|2 +2ν

2)|(P1−P2)|2

|Z1(η ,P1,O,S,Qt ,Qp)−|Z1(η ,P2,O,S,Qt ,Qp)|2 ≤ sup
η∈Dw′

|w′|2(2α
2 sup

η∈DS

|S|2)× sup
η∈DP

|P1−P2|2

|Z1(η ,P1,O,S,Qt ,Qp)−|Z1(η ,P2,O,S,Qt ,Qp)|2∞ ≤ ‖w′‖2
∞(2α

2‖S‖2
∞)|P1−P2|2∞

|Z1(η ,P1,O,S,Qt ,Qp)−|Z1(η ,P2,O,S,Qt ,Qp)|2∞ ≤ k̄1|P1−P2|2∞

where

k̄1 = ‖w′‖2
∞(2α

2‖S‖2
∞)

|Z2(η ,P,O1,S,Qt ,Qp)−|Z2(η ,P,O2,S,Qt ,Qp)|2 = |w′(−(β1 +ν))(O1−O2)|2

|Z2(η ,P,O1,S,Qt ,Qp)−|Z2(η ,P,O2,S,Qt ,Qp)|2 ≤ |w′|2(2β
2
1 +2ν

2)|(O1−O2)|2 (28)

|Z2(η ,P,O1,S,Qt ,Qp)−|Z2(η ,P,O2,S,Qt ,Qp)|2 ≤ sup
η∈Dw′

|w′|2(2β
2
1 +2ν

2)× sup
η∈DP

|O1−O2|2

|Z2(η ,P,O1,S,Qt ,Qp)−|Z2(η ,P,O2,S,Qt ,Qp)|2∞ ≤ ‖w′‖2
∞(2β

2
1 +2ν

2)|O1−O2|2∞

|Z2(η ,P,O1,S,Qt ,Qp)−|Z2(η ,P,O2,S,Qt ,Qp)|2∞ ≤ k̄2|O1−O2|2∞

where

k̄2 = ‖w′‖2
∞(2β

2
1 +2ν

2)

|Z3(η ,P,O,S1,Qt ,Qp)−|Z3(η ,P,O,S2,Qt ,Qp)|2 = |w′(β2Qt− (ν +δ + ε)(S1−S2))|2
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|Z3(η ,P,O,S1,Qt ,Qp)−|Z3(η ,P,O,S2,Qt ,Qp)|2 ≤ (29)

|w′|2(2β
2
2 |Qt |2 +6(ν2 +δ

2 + ε
2)) (30)

|(S1−S2)|2

|Z3(η ,P,O,S1,Qt ,Qp)−|Z3(η ,P,O,S2,Qt ,Qp)|2 ≤ (31)

sup
η∈Dw′

|w′|2(2β
2
2 sup

η∈Dc

(32)

|Qt |2 +6(ν2 +δ
2 + ε

2))

× sup
η∈DS

|S1−S2|2

|Z3(η ,P,O,S1,Qt ,Qp)−|Z3(η ,P,O,S2,Qt ,Qp)|2∞ ≤ (33)

‖w′‖2(β 2
2 ‖Qt‖2

∞ +6(ν2 +δ
2 + ε

2))

× sup
η∈DS

|S1−S2|2

|Z3(η ,P,O,S1,Qt ,Qp)−|Z3(η ,P,O,S2,Qt ,Qp)|2∞ ≤ k̄3|S1−S2|2∞

where

k̄3 = ‖w′‖2(β 2
2 ‖Qt‖2

∞ +6(ν2 +δ
2 + ε

2))

|Z4(η ,P,O,S,Q1t ,Qp)−Z4(η ,P,O,S,Q2t ,Qp)|2 = |w′(−β2S−ν)(Q1t−Q2t)|2

|Z4(η ,P,O,S,Q1t ,Qp)−Z4(η ,P,O,S,Q2t ,Qp)|2 ≤ |w′|2(β 2
2 |S|2−ν

2)|(Q1t−Q2t)|2

|Z4(η ,P,O,S,Q1t ,Qp)−Z4(η ,P,O,S,Q2t ,Qp)|2

≤ sup
η∈Dw′

|w′|2(β 2
2 sup

η∈DS

|S|2−ν
2)

× sup
η∈DQt

|(Q1t−Q2t)|2

|Z4(η ,P,O,S,Q1t ,Qp)−Z4(η ,P,O,S,Q2t ,Qp)|2∞ ≤ |w′|2∞(β 2
2 |S|2∞−ν

2)

×|(Q1t−Q2t)|2∞

|Z4(η ,P,O,S,Q1t ,Qp)−|Z4(η ,P,O,S,Q2t ,Qp)|2∞ ≤ k̄4|(Q1t−Q2t)|2∞

where

k̄4 = |w′|2∞(β 2
2 |S|2∞−ν

2)

|Z5(η ,P,O,S,Qt ,Q1p)−Z5(η ,P,O,S,Qt ,Q2p)|2 = |w′(−ν))(Q1p−Q2p)|2
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|Z5(η ,P,O,S,Qt ,Q1p)−Z5(η ,P,O,S,Qt ,Q2p)|2 ≤ (ν2))|(Q1p−Q2p)|2

|Z5(η ,P,O,S,Qt ,Q1p)−Z5(η ,P,O,S,Qt ,Q2p)|2 ≤ sup
η∈Dw′

|w′|2(ν2)

× sup
η∈DQp

|(Q1p−Q2p)|2

|Z5(η ,P,O,S,Qt ,Q1p)−Z5(η ,P,O,S,Qt ,Q2p)|2∞ ≤ |w′|2∞(ν2)

×|(Q1p−Q2p)|2∞

|Z5(η ,P,O,S,Qt ,Q1p)−Z5(η ,P,O,S,Qt ,Q2p)|2∞ ≤ k̄5|(Q1p−Q2p)|2∞

where

k̄5 = |w′|2∞(ν2)

4. Analysis of equilibrium points:

This section presents an analysis of equilibrium points.In order to determine the equilibrium points,
we must set the system’s left side, 1−5, to 0. For this model, the disease-free equilibrium is

K1(P,O,S,Qt ,Qp) = (
µ

ν
,0,0,0,

γδ

ν
) (34)

5. Global stability Analysis:

The global stability analysis employs Lyapunov’s technique and Lasalle’s invariance concept to
determine disease eradication conditions.

5.1. First derivative of Lyapunov
Theorem:3.4. The endemic equilibrium points of the (P,O,S,Qt ,Qp) model are globally asymp-

totically stable when the reproductive number R0 > 1.

Proof: To prove this, a Lyapunov function can be defined as follows:

L(P∗O∗S∗Q∗t Q∗p) = (P−P∗−P∗ log P
P∗ )

+(O−O∗−O∗ log
O
O∗

)

+(S−S∗−S∗ log S
S∗ )+(Qt−Q∗t −Q∗t log Qt

Q∗t
) (35)

+(Qp−Q∗p−Q∗p log Qp
Q∗p

)

12



Using the derivative on both sides, we obtain

dL
dt

= L = (
P−P∗

P
)Ṗ+(

O−O∗

O
)Ȯ+(

S−S∗

S
)Ṡ

(
Qt−Q∗t

Qt
)Q̇t +(

Qp−Q∗p
Qp

)Q̇p (36)

we have

dL
dt

= (
P−P∗

P
)(µ−αPS−νP)

+ (
O−O∗

O
)(αPS−β1O−νO)

+ (
S−S∗

S
)(β1O+β2SQt− (ν +δ + ε)S)

+ (
Qt−Q∗t

Qt
)(−β2SQt +δ (1− γ)S−νQt)

+ (
Qp−Q∗p

Qp
)(γδS−νQp) (37)

dL
dt

= (
P−P∗

P
)(µ−α(P−P∗)(S−S∗)−ν(P−P∗))+(

O−O∗

O
)

× (α(P−P∗)(S−S∗)−β1(O−O∗)−ν(O−O∗))+(
S−S∗

S
)

× (β1(O−O∗)+β2(S−S∗)(Qt−Q∗t )− (ν +δ + ε)(S−S∗))

+ (
Qt−Q∗t

Qt
)(−β2(S−S∗)(Qt−Q∗t )+δ (1− γ)(S−S∗)

− ν(Qt−Q∗t ))+(
Qp−Q∗p

Qp
)(γδ (S−S∗)−ν(Qp−Q∗p)) (38)

dL
dt

= µ−µ
P∗

P
−α

S
P
(P−P∗)2 +α

S∗

P
(P−P∗)−ν

(P−P∗)2

P

+ αPS−αPS∗−αSP∗+αP∗S∗−α
O∗

O
PS+

O∗

O
P∗S

+
O∗

O
P∗− O∗

O
P∗S∗−β1

(O−O∗)2

O
−ν

(O−O∗)2

O

+ β1O−β1O∗− S∗

S
β1O+

S∗

S
β1O∗+

(S−S∗)2

S
Qtβ2

− (S−S∗)2

S
Q∗t β2− (ν +δ + ε)

(S−S∗)2

S
−β2S

(Qt−Q∗t )
2

Qt

+ β2S∗
(Qt−Q∗t )

2

Qt
+δS− γδS−δS∗− γδS∗−δS

Q∗t
Qt

+ γδS
Q∗t
Qt

+δS∗
Q∗t
Qt
− γδS∗

Q∗t
Qt
−ν

(Qt−Q∗t )
2

Qt
γδS

− γδS∗−
Q∗p
Qp

γδS
Q∗p
Qp

γδS∗−ν(
(Qp−Q∗p)

2

Qp
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we can write

dL
dt

= j+ l (39)

where

j = µ +α
S∗

P
(P−P∗)+αPS+αP∗S∗+

O∗

O
P∗S

+
O∗

O
P∗+β1O+

S∗

S
β1O∗+

(S−S∗)2

S
Qtβ2 + γδS

Q∗t
Qt

+ γδS
Q∗t
Qt

+δS∗
Q∗t
Qt

+ γδS
Q∗t
Qt

+δS∗
Q∗t
Qt

γδS+
Q∗p
Qp

γδS∗ (40)

and

l = µ
P∗

P
+α

S
P
(P−P∗)2 +ν

(P−P∗)2

P
+αPS∗+αSP∗

+ α
O∗

O
PS+

O∗

O
P∗S∗+β1

(O−O∗)2

O
+ν

(O−O∗)2

O

+ β1O∗+
S∗

S
β1O+

(S−S∗)2

S
Q∗t β2 +(ν +δ + ε)

(S−S∗)2

S

+ β2S
(Qt−Q∗t )

2

Qt
+ γδS−δS∗+ γδS∗+δS

Q∗t
Qt

+ γδS∗
Q∗t
Qt

+ν
(Qt−Q∗t )

2

Qt
+ γδS∗+

Q∗p
Qp

γδS+ν(
(Qp−Q∗p)

2

Qp
(41)

We conclude that if j < l, this yields dL
dt = 0. However, when P=P∗,O=O∗,S= S∗,Qt =Q∗t ,Qp =Q∗p,

0 = j− l⇒ dL
dt

= 0 (42)

we can see that

(P∗,O∗,S∗,Q∗t ,Q
∗
p) ∈ T

dL
dt

= 0 (43)

According to LaSalle’s invariance principle, the model is globally asymptotically stable.

6. Numerical Scheme by FFM.

In this section, we present a numerical scheme to solve the model numerically, based on a Newton
polynomial. Here, we apply novel differential and integral operators to the proposed model. In this
case, the operator with the Mittag-Leffler kernel will replace the classical differential operator. The
version with a variable order will also be used.

0FFMDζ ,τ
t P′(η) = µ−αP(η)S(η)−νP(η)

0FFMDζ ,τ
t O′(η) = αP(η)S(η)−β1O(η)−νO(η)

0FFMDζ ,τ
t S′(η) = β1O(η)+β2S(η)Qt(η)− (ν +δ + ε)

14



0FFMDζ ,τ
t Q′t(η) = −β2S(η)Qt(η)+δ (1− γ)S(η)−νQt(η)

0FFMDζ ,τ
t Q′p(η) = γδS(η)−νQp(η)

To keep things simple, we write the above equation as;

0FFMDζ ,τ
t P′(η) = P1(t,P,O,S,Qt ,Qp)

0FFMDζ ,τ
t P′(η) = O1(t,P,O,S,Qt ,Qp)

0FFMDζ ,τ
t P′(η) = S1(t,P,O,S,Qt ,Qp) (44)

0FFMDζ ,τ
t P′(η) = Qt1(t,P,O,S,Qt ,Qp)

0FFMDζ ,τ
t P′(η) = Qp1(t,P,O,S,Qt ,Qp)

Where

P1(t,P,O,S,Qt ,Qp) = µ−αP(η)S(η)−νP(η)

O1(t,P,O,S,Qt ,Qp) = αP(η)S(η)−β1O(η)−νO(η)

S1(t,P,O,S,Qt ,Qp) = β1O(η)+β2S(η)Qt(η)− (ν +δ + ε)

Qt1(t,P,O,S,Qt ,Qp) = −β2S(η)Qt(η)+δ (1− γ)S(η)−νQt(η)

Qp1(t,P,O,S,Qt ,Qp) = γδS(η)−νQp(η)

We acquire the subsequent

P(tσ+1) =
τ(1−ζ )

AB(ζ )
tτ−1
σ P1(tσ ,P(tσ ),O(tσ ),S(tσ ),Qt(tσ ),Qt(tσ ))

ζ τ

AB(ζ )Γ(ζ )
Σ

σ
v=2

∫ tv+1

tv
P1(t,P,O,S,Qt ,Qp)ρ

τ−1(tσ+1−ρ)ζ−1dρ

O(tσ+1) =
τ(1−ζ )

AB(ζ )
tτ−1
σ O1(tσ ,P(tσ ),O(tσ ),S(tσ ),Qt(tσ ),Qt(tσ ))

ζ τ

AB(ζ )Γ(ζ )
Σ

σ
v=2

∫ tv+1

tv
O1(t,P,O,S,Qt ,Qp)ρ

τ−1(tσ+1−ρ)ζ−1dρ

S(tσ+1) =
τ(1−ζ )

AB(ζ )
tτ−1
σ S1(tσ ,P(tσ ),O(tσ ),S(tσ ),Qt(tσ ),Qt(tσ ))

ζ τ

AB(ζ )Γ(ζ )
Σ

σ
v=2

∫ tv+1

tv
S1(t,P,O,S,Qt ,Qp)ρ

τ−1(tσ+1−ρ)ζ−1dρ

Qt(tσ+1) =
τ(1−ζ )

AB(ζ )
tτ−1
σ Qt1(tσ ,P(tσ ),O(tσ ),S(tσ ),Qt(tσ ),Qt(tσ ))

ζ τ

AB(ζ )Γ(ζ )
Σ

σ
v=2

∫ tv+1

tv
Qt1(t,P,O,S,Qt ,Qp)ρ

τ−1(tσ+1−ρ)ζ−1dρ
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Qp(tσ+1) =
τ(1−ζ )

AB(ζ )
tτ−1
σ Qp1(tσ ,P(tσ ),O(tσ ),S(tσ ),Qt(tσ ),Qt(tσ ))

ζ τ

AB(ζ )Γ(ζ )
Σ

σ
v=2

∫ tv+1

tv
Qp1(t,P,O,S,Qt ,Qp)ρ

τ−1(tσ+1−ρ)ζ−1dρ

The Newton polynomial, which we will review, is provided by

G(t,P,O,S,Qt ,Qp) ' G(tσ−2,Pσ−2,Oσ−2,Sσ−2,Qt(σ−2),Qp(σ−2))

+
1
∆t

[G(tσ−1,Pσ−1,Oσ−1,Sσ−1,Qt(σ−1),Qp(σ−1))

− G(tσ−2,Pσ−2,Oσ−2,Sσ−2,Qt(σ−2),Qp(σ−2))](ρ− tσ−2)

+
1

2∆t2 [G(tσ ,Pσ ,Oσ ,Sσ ,Qt(σ),Qp(σ))

− 2G(tσ−1,Pσ−1,Oσ−1,Sσ−1,Qt(σ−1),Qp(σ−1))

− G(tσ−2,Pσ−2,Oσ−2,Sσ−2,Qt(σ−2),Qp(σ−2))]

× (ρ− tσ−2)(ρ− tσ−1)

Here are the numerical solutions for P(η) when the Newton polynomial is substituted into the equa-
tions.

P(σ+1) =
τ(1−ζ )

AB(ζ )
tτ−1
σ P1(tσ ,P(tσ ),O(tσ ),S(tσ ),Qt(tσ ),Qt(tσ ))

+
ζ τ

AB(ζ )Γ(ζ )
Σ

σ
v=2P1(tv−2,Pv−2,Sv−2,Ov−2,Qv−2

t ,Qv−2
p )tτ−1

v−2

×
∫ tv+1

tv
(tσ+1−ρ)ζ−1dρ +

ζ τ

AB(ζ )Γ(ζ )
Σ

σ
v=2

1
4t

[tτ−1
v−1

× P1(tv−1,Pv−1,Ov−1,Sv−1,Qv−1
t ,Qv−1

p )

− tτ−1
v−2 P1(tv−2,Pv−2,Sv−2,Ov−2,Qv−2

t ,Qv−2
p )]

×
∫ tv+1

tv
(ρ− tv−2)(tσ+1−ρ)ζ−1dρ

+
ζ τ

AB(ζ )Γ(ζ )
Σ

σ
v=2

1
24 t2 tτ−1

v P1(tv,Pv,Ov,Sv,Qv
t ,Q

v
p)

− 2tτ−1
v−1 P1(tv−1,Pv−1,Ov−1,Sv−1,Qv−1

t ,Qv−1
p )

+ tτ−1
v−2 P1(tv−2,Pv−2,Ov−2,Sv−2,Qv−2

t ,Qv−2
p )

For the integral in the aforementioned equation, we can carry out the following calculations.∫ tv+1

tv
(tσ+1−ρ)ζ−1dρ =

(∆t)ζ

ζ
[(σ − v+1)ζ − (σ − v)ζ ]∫ tv+1

tv
(ρ− tv−2)(tσ+1−ρ)ζ−1dρ =

(∆t)ζ+1

ζ (ζ +1)

∫ tv+1

tv
(ρ− tv−2(ρ− tv−1)(tσ+1−ρ)ζ−1dρ =

(∆t)ζ+2

ζ (ζ +1)(ζ +2)
× [(σ − v+1)ζ ×{2(σ − v)2

+(3ζ +10)(σ − v)+2ζ
2 +9ζ +12}− (σ − v)ζ ×{2(σ − v)2 +(5ζ +10)(σ − v)+6ζ

2 +18ζ +12}](45)
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P(σ+1) =
τ(1−ζ )

AB(ζ )
tτ−1
σ P1(tσ ,P(tσ ),O(tσ ),S(tσ ),Qt(tσ ),Qt(tσ ))+

ζ (∆t)ζ

AB(ζ )Γ(ζ +1)
Σ

σ
v=2tτ−1

v−2 P1(tv−2,Pv−2,Sv−2,Ov−2,Qv−2
t ,Qv−2

p )× [(σ − v+1)− (σ − v)]

+
ζ (∆t)ζ

AB(ζ )Γ(ζ +2)
Σ

σ
v=2[t

τ−1
v−1 P1(tv−1,Pv−1,Ov−1,Sv−1,Qv−1

t ,Qv−1
p )− tτ−1

v−1

P1(tv−2,Pv−2,Sv−2,Ov−2,Qv−2
t ,Qv−2

p )]× [(σ + v+1)ζ (σ − v+3+2ζ )

− (σ − v)ζ (σ − v+3+3ζ )]+
ζ (∆t)ζ

2AB(ζ )Γ(ζ +3)
Σ

σ
v=2[t

τ−1
v P1(tv,Pv,Ov,Sv,Qv

t ,Q
v
p)

− 2tτ−1
v−1 P1(tv−1,Pv−1,Ov−1,Sv−1,Qv−1

t ,Qv−1
p )+ tτ−1

v−2 P1(tv−2,Pv−2,Ov−2,Sv−2,Qv−2
t ,Qv−2

p )]

× [(σ − v+1)ζ{2(σ − v)2 +(3ζ +10)(σ − v)+2ζ
2 +9ζ +12}

− (σ − v)ζ{2(σ − v)2 +(5ζ +10)(σ − v)+6ζ
2 +18ζ

2 +12}]

The numerical scheme for O(η), S(η), Qt(η) and Qp(η) are similar to all above equations so its
omit. This is the complete numerical scheme of fractal fractional with ML kernel.

7. Simulation

Here, We employed a sophisticated method to calculate theoretical outcomes and assess their rele-
vance. The validity of the theoretical results is demonstrated by the following examples. By means of
simulation, the suggested POSQtQp system is described in terms of actual circumstances. Applying
non-integer parametric values to the smoking model’s chronic stage produced some amazing results.
The answers for P(η), O(η), S(η), Qt(η) and Qp(η) are shown in Figures 1-5. To confirm that
the theoretical results are effective, we provide the following examples with MATLAB coding. The
smoking model was simulated numerically. The recommended system employs the following parame-
ters: α = 0.14, µ = 0.001, ν = 0.001, β1 = 0.002, β2 = 0.0025, δ = 0.08, ε = 0.00003, 1− γ = 0.52
γ = 0.48

Potential somkers P(η), occasional smokers O(η), smokers S(η), temporary quitters Qt , and per-
manent quitters Qp in which all sub-compartments shrink and eventually stabilize using various di-
mensions, as indicated by figures 4 and 5 respectively. Comparable actions are seen either with dimen-
sion 0.7 or 0.5 with slight impacts, but by decreasing dimensions we obtain more suitable results as
shown in figure respectively. The behavior of the dynamics with in the special fractional parameters
is displayed by the numerical results that have been provided. Additionally, it is noted that recovered
increases by decreasing the dimension and fractional values as shown in Figure under the acute and
chronic stages. It is concluded that early detection of smoking and a combination of acute and chronic
stage investigation can help control smoking.
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Figure 1: Graphical Representation of P(η).
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Figure 2: Graphical Representation of Q(η).
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Figure 3: Graphical Representation of S(η).

18



0 50 100 150
0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34
Proposed Method

t

Q
t(η

)

 

 
ξ=1.0
ξ=0.95
ξ=0.90
ξ=0.85

(a) proportion 0.7

0 50 100 150
0.25

0.26

0.27

0.28

0.29

0.3

0.31
Proposed Method

t

Q
t(η

)

 

 
ξ=1.0
ξ=0.95
ξ=0.90
ξ=0.85

(b) proportion 0.5

Figure 4: Graphical Representation of Qt(η).
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Figure 5: Graphical Representation of Qp(η).

8. Conclusion

In this paper, investigation and analysis of smoking model has been done by utilizing the fractal
fractional operator for continuous monitoring of bad impact of smoking. Qualitative and quantitative
analysis have been made for the proposed system to capture the stable state of the smoking system. The
boundedness, uniqueness and positivity of the smoking model is derived which are the key properties
of the epidemic system. System is investigated globally by utilizing lypounove function to observe
the rate of impact. Numerical solutions are taken out under advance operator FFM for continuous
monitoring of bad impact of smoking with different dimensions. Simulations are also derived with the
help of MATLAB to capture the real behavior of bad impact of smoking. Furthermore, based on our
findings, we provide future estimates to help reduce the risk of disease transmission in the environment.
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