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Abstract:

The problem of unemployment is acute, joblessness affects millions of people worldwide, which is
why governments are constantly looking for efficient solutions to combat this social and economic ill.
In response, we construct a model that encompasses the nonlinear nature of the unemployment rate. A
fractional-order system of differential equations is employed in the structure of the considered model
to produce a more accurate analysis of the unemployment dynamics of equilibrium positions and their
stability or instability. In the model, there are three main dynamical parameters whose time evolution
is described by fractional-order differential equations involving Caputo derivatives. The existence
and uniqueness of the solutions are established by using the fixed point indices and the stability of
the model is determined by applying the Hyers-Ulam stability test. A Newton polynomial approach is
used for numerical simulation and investigates the results at fractional orders @ = 0.85 and ® = 1. The
results presented in this paper suggest that there is one and only one stable positive equilibrium that is
locally and globally asymptotically stable under some conditions. Computations demonstrate that for
different values of w, obtained with Caputo derivatives coinciding with the classical sense at @ = 1.
In this study, by determining the employment rate and job creation rate that produce an unemployment
rate of 7% the model complies with the governments policy objectives of low unemployment. These
results provide important implications for the dynamic employment policies suggested and point to the
use of fractional-order methodologies in other economic-social systems.
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1. Introduction

Unemployment is a major issue impacting individuals, communities, and nations worldwide. It
refers to the condition where individuals actively seeking employment, despite meeting specific quali-
fications, are unable to secure jobs that match their skills. High unemployment rates have far-reaching
consequences, including economic uncertainty, social inequality, and psychological distress [1]. In so-
ciety, unemployment is particularly destructive as it fosters social issues such as rejection, reduced self-
esteem, and depression among affected individuals [2]. It exacerbates disparities, especially among
youth and other vulnerable groups, undermining equality and deepening divisions. Additionally, un-
employment is linked to increased crime rates and potential social instability, posing significant barriers
to the smooth functioning of society and human well-being [3, 4, 5]. The study [6] employs mathe-
matical modeling to analyze and predict unemployment trends while exploring strategies to mitigate



the effects of rising unemployment rates.

Mathematical modeling is a powerful tool for analyzing and predicting unemployment trends while
evaluating the effects of various policy measures. By capturing the complexities of unemployment
dynamics, these models enable researchers and policymakers to understand underlying mechanisms,
identify critical influencing factors, and explore effective strategies for mitigating unemployments neg-
ative impacts. Recent studies have increasingly focused on mathematical approaches to unemployment
modeling [7, 9, 10]. Al-Maalwi et al. [7] emphasized that to prevent rising unemployment, job creation
must meet or exceed the equilibrium unemployment level. Similarly, Sheikh et al. [8] and Al-Maalwi
et al. [10] highlighted the significant role communities can play in reducing unemployment, particu-
larly when government job-creation efforts fall short.

The Atangana derivative has been recognized for its efficient memory operator, characterized by non-
local and non-singular kernel properties [10]. Fractional operators have proven highly effective in
modeling complex physical processes with exceptional accuracy. For instance, the study in [11] ap-
plied a Caputo fractional derivative to analyze the dynamics of social media addiction. Similarly,
[12] explored unemployment dynamics using the fractional power law and the Mittag-Leffler function.
Jamil et al. (2024) in [13] conducted an in-depth analysis of respiratory syncytial virus (RSV) infec-
tions through a fractional-order mathematical model. The authors in [14] provided a comprehensive
examination of Hepatitis B Virus (HBV) dynamics, incorporating vaccination and treatment strategies
via a novel fractional derivative approach. Additionally, [15] investigated COVID-19 transmission
dynamics using a fractional-order framework that included age dependence, while [16] presented an
advanced mathematical model to study the dynamics of Ebola virus epidemics.

Our study employs fractional-order derivatives due to their ability to incorporate memory effects, cap-
turing both cumulative and delayed influences on unemployment dynamics. Unlike integer-order mod-
els, which account only for instantaneous changes, fractional calculus considers historical factors such
as past policies and economic conditions. This approach provides valuable insights into past dependen-
cies, with unemployment rates demonstrating sensitivity to historical job creation rates (o). Fractional
models also facilitate smoother transitions between unemployment states, closely aligning with real-
world dynamics. These features make the fractional model a powerful tool for shaping policies that
address both immediate and long-term socio-economic challenges. The article begins with an intro-
duction in Section 1, followed by preliminary fractional-order derivatives that provide foundational
understanding of unemployment dynamics in Section 2. In Section 3, we present the proposed model,
determine the equilibrium state, and discuss its local stability. Section 4 confirms the existence and
uniqueness of solutions using the fixed-point approach, while Section 5 applies non-linear analysis to
establish Ulam-Hyers stability. An advanced numerical method is introduced in Section 6 to solve the
fractional-order system and verify the impact of fractional parameters. The findings are discussed in
detail in Section 7, with the study concluding in Section 8.

2. Fundamental Concepts

This portion consists of some fundamental ideas that are useful for system analysis.

Definition 2.1. [/1] The usual Caputo time-fractional derivative of order V is expressed as

1 t
Cne —€_/
Diz(t) = =—— t— dp,0<e<1.
Definition 2.2. [11] The corresponding fractional integral operator € € (0,1) for Caputo FD is as
follows:

HEDE % [ a=p)z(p)dp.
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3. Unemployment Fractional Order Model

In the model formation process, we assume that all the people who are categorized as unemployed
have the skills and /or qualifications to be employed. The unemployed people population U(t) in-
creases by A with time. Employment of these people may be occasioned by the obtaining of a certain
employment rate K which may affect the employment people, denoted as E(t). However, some of the
employed will lose their jobs or quit their jobs to join the unemployed list at a certain rate. The un-
employed die or migrate in proportion to their quantities and every employed worker migrates, retires,
or dies at the rate of . The available job vacancies at a given time, V(t), are generally offered by
both the Government and private organizations, and; it is taken that the number of those willing to
work is in direct proportion with the unemployed persons at a ratio of 0. The Quicker steeled employ-
ment empty position probabilities that an unemployed person enters vacancies, is directly associated
with the number of unemployed and vacancies increased at a rate of K. The rate at which vacancies
are eliminated because of the deficiency of government funding; The rate of government funding is
inadequate concerning shortages 0.

oD’U(t) =A— KU (f)V(f)+ﬁE() uu ().
oDPE(t) = KU(1)V (1) — BE(r) — aE(t). (D)
oDV (1) = oU(t) =8V (1).

3.1. Equilibrium Point and Local Stability

To find the equilibrium points of the system (1), we put the left-hand side of the system (1) as
zero. Consequently, by direct calculations, it is possible to state the fact that there is only one positive
equilibrium point denoted as I* = (U*,E*,V*) where

oU*

5

. KoU*?
-~ S(a+p)’

—(o+B)opu+ \/[(0‘+l3)5ﬂ]2+4(1{00¢) ((x+pB)d)
2Koa '

Theorem.3.1 The positive equilibrium I* = (U*, E*, V*) is locally asymptotically stable.
Proof Evaluating system (1) Jacobian matrix at positive equilibrium I* gives

V=

*_

—KV*—uU* B —KU*,
J(I*) = KV* —B—oa KU*, |,
o 0 -0
—kV* —uU*— A B —kU*
= kV* —(ax+B)—A  kU*
o 0 —-6—-A

= (kv —uU* = A)[(=(a+B)—=2A) (=6 —A)] = B[-(6 + 1) (KV") — o (KU")]
—KU*(c(x+B+A)),

= (—kV*—uU*— 1) [a8 +BS+ A5+ ar +BA+ A% — B[—(8KV* + AKV*) — 6KU*]
—KU* (caa+0B+0A),
This provides its characteristic equation.

M +a A’ +ad+az =0,
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where

aj=(0+a+p+uU*+kv"),

ay = (kV*6+kV*o+kV*B+uU*s +ad — o+ BKV* —KU*0),
=uU*6(a+B)+kV*é(a+B)+KU*oq,
=0(a+pB){uU*+kV*} +KU*o0.
Hence the use of the Routh Hurwitz table it is thus possible to conclude that all the roots of the
characteristic equation have a negative real part. This means that the /* equilibrium point is a locally
stable one and approaches a stable state as time elapses.

4. Existence and Uniqueness of the Solution

This part proves that the system has a solution and the solution is unique
Theorem. 4.1 The function G; for
i =1,2,3 satisfies the Lipschitz and contraction mapping conditions if the following inequality holds:
0<m<1.
Proof For U and U;, we have
| G (8,U) =Gy (1,U) | =| A= KU (1) V (t) + BE (1) — U (1) — A+ KU, (1) V (t) = BE (1) + kU, (1) |
S KW O 0O @O plv @) -0 0] 5
<|KV @)U (@6) =U (O] | + | u[U (1) -
<KV +u] U @) -0 @),
< [Kys+ul[[U@)=U (1) |-
There are positive constant yy,y>,y3 such as
1 U@) <yl EQ) 1<yl V) 1< ys:
and

= ([Ky3 + u]) are non-negative bounded function.
Hence
| G (t,U (1)) =G (1, U 1< my || (U (1)~ U1 (1)) || -
similarly, we can prove G; for i = 1,2satisfy the Lipschitz condition.
I G1(8,U (1)) = Gi (1, U1) |[<my [[ (U (1) = UL (1)) |-
| G2 (1, E (1)) = G2 (t,E1) |<ma || (E (1) = Ex (1)) ] -
| G3(t,V (1)) =G3(t, Vi) [[<m3 || (V(6)=Vi (1) ||
Consequently, the Lipschitz condition is satisfied by G;. Additionally, the function is contraction under
the constraint O < n; < 1. Take into account the following recursive forms, depending on the system:

t

U, (t) = ﬁof(t —m)*'Gy (m,U,_))dm,
t

E (t) = r%)({(f —m)® Gy (m,E,_1)dm,
t

Vo (1) = gy ) (1 =m)*~ 'G5 (m,V,—1) dm,
0

The difference between two terms:

Y, t)=U(t)-U,_1 (t) =

O~ O\N

(t—m)® (G| (m,U,_1) — G, (t,Up_2) ) dm,

1

"_‘

Wo,(t) =E,(t) —E,—_i (t) = (t—m)® " (Ga(m,Er_1) — Ga (t,E,_2)) dm,

|
g

(t—m)° 1 (G3(m,V,_1) — G3(t,Vs_2)) dm,

=U(0),E(t) =E(0),V(t) =V(0). We proceed with the first equation
ased on the norm and the Lipschitz condition and obtain

W, (1) =V, (1) = Vo (1) = =

Using the initial condition U
of the aforementioned method

~~ ’1

> =2

o—‘v g‘
o o
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11 () =1 Ur (6) = Upet () 1= 7 S (6 = m)®™ (G (m,Uy1) = G (1,Up—2) ) dim |,

o o

t

< F;a))({H (t=m)®""(G1 (m,Uy—1) = Gi (t,U;—2)) || dm,
t

I'¥1r () 1< /ey ({II Py (6 =m)®~ ) || dm.

We get

t
1920 (0) 1< 5 ] 1 ¥ (6 =m)@ )

t
195 0) 1< ey L | ¥y ((=m)@ 1) | dm
Then we can write that

Ur (1) = Xy Wi (0)Er (1) = Ximy Wai (1)3Vr (1) = Eimy Wi (1) -
We then show that there exists a solutlon to this problem
Theorem.4.2 If there exists #; > 1 such that ( )t1<1 for i = 1,2,3 then there exists at least one

solution of the unemployment system (1)
Proof Suppose their exist # such that ( )t1<1

| (1) 1< %Of | 11y (6 —m)®~1) || dim.
Replacing r byr — 1 in the above inequility

| %1 (1) H<( )IH‘PH o) (1= m)@1) | dm,
< () 1912 (=) 1 am,

Again replacing r by r — 2 in the given inequality
t
1920 1< () T ¥ (6 =m) ) [ dm

3t
< () [ 116 (G=m) ) [ am
If so, if we substitute in this manner repeatedly and employ the initial condition, we get

| ¥4, (1) ||<] U-(0) || [W;}

Similarly,we get
| w2 () <1 E- 0) || [55e]
|5 () 1<V 0) I [t

This system has a solution, so it is also continuous. We will prove that W, () Wy, (t) W3, (¢) converge
to system of solution.

Assume Ty, (¢),To(¢), T3, (¢) as a Fixed point iteration method so that

U()-U(0)=U(t) =Ty, (1),

E(t)—E(0) =E,(t) — T (2)

V(t)=V(0)=V,(t)—Ts (1),

When we apply the triangle inequality to the Lipschitz G1 condition, we obtain: We apply the norm to
the first equation of the previous technique, and by applying the Lipschitz condition, we obtain

1T @) 1= ey ({Z(Gl (m,Ur) = G (t,Ur—1))dm ||,
Ur) -

< i J (G (m,U,) — Gy (6,Uy1))dm,

< F(w)rl || U —U H t
Recursively using the aforementioned procedure, we get
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r+1
1T () 1< [yt m
The Lipschitz constant in this case is m. Consequently, the sequence is valid and satisfies the stated
requirements as

H Tor (t) H_> 0; || T3, (I) ||—> 0; as r — oo.
r+n ; XI+I*X'{+}1+1
| Urn (1) = Ur (1) [I< L Xi ="
i=r
r+n ; X+ _xrtntl
| Erpn(t) —E (1) |I< X X)="1772— 1—X22 ’
i=r+1
r4n . X+ _xrntl
1=r+

By hypothesis %{L)tl < 1.U,E,V are Cauchy sequences. Because of this, it is possible to conclude that
they are uniformly convergent. This means that the only solution to the fractional system is the limit
of the sequences.

Theorem.4.3 If the condition (l — r?(lo)t) >0, fori=1,2,3, holds then the UEV model of unemploy-

ment probleming is unique solution.
Proof We suppose that another solution is possible for the system to distinguish the uniqueness of the
solution, for instance, U; (¢),E; (t),V) (¢).
t
U)—U (t) < ﬁf(Gl (m,U) — Gy (m,Uy))dm.
0

Now, we take the norm of above equation
t

U (@)= Ui (1) |[< ﬁof(Gl (m,U) = G1(m,Uy)) || dm.

1 t
SFGSZH@MMU%%thMHWm

As per the Lipschitz condition it can be concluded that
t

U @) =U1 (1) [I< ﬁnlt({ | (U (1) =Ui (1)) || dm,

consequently

1U @)= U1 (1) | =gyt || (U (6) = Ui (1)) <0,

106 =010 1= gy 1. @

If1-— #w)t > 0, then the previous Eq. (2) has the form

U (1) = Ui () [|=0.

Accordingly, U (1) = U (¢) . Use the same method for all solutions for
i=1,2,3,, and we obtain

| E@#)—Ei(2) [[=0: | V(1) = Vi (1) [|=0;

This proves the theorem. O

S. Hyers-Ulam-Rassias Stability

Hyers-Ulam-Rassias stability is a property of a functional equation in that they suffer arbitrary
small perturbations in their arguments. It is an easily understood concept in functional analysis, espe-
cially in the theory of functional equations. This measures the closeness of a solution, of a functional
equation to a solution of the next functional equation that will be studied. This means that it doesnt mat-
ter in which part of the equation formulas containing the knowns and unknowns are arranged because,
for applications in which the time derivation of the unknowns is equal to O to obtain the steady-state
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solutions, these equations are stable. This can be used in practice in practically all branches of mathe-
matics, physics, engineering, and economics to mention but a few. Let us write the model as follows:

{ oP° 16 ()] =A,6 (1)), 3)
E(0)=¢&),0<t<T < oo,

where § = {U,E,V} and A = (A1, Ay,A3) is a continuous vector function.

Definition 5.1. Assume that the fractional order @ is 0 < @ < 1 and F : [0, T] x R® — R? is a continuous
mapping. Then, model (3) is Hyers-Ulam stable if 3 ¢ > 0 and P > 0, such that for each solution
£ €0([0,T] ,R3) , the following inequality exists:
15D [E]-A(,E) <P,

Vt €[0,T]

3 a solution &' € O ([0,T],R*) of model (3), such as

| € —&"||<gP,Vt€[0,T]. (4)

Definition 5.2. The fractional-order ® is assumed to be 0 < ® < 1. These functions are continuous
mappings: A:[0,T] x R> — R and © : [0,T] — R*. Accordingly, model (3) is generalized Hyers-
Ulam-Rassias stable with respect to © if 3 Op @ > 0, so that for any solution & € O ([0, T ,R3) , the
following inequality holds:

16D [E ()] = A2, & (1) I<O(1),Vr €[0,T] (5)
3" €0 ([O,T] ,R3) of model (3), such as
1€ —E&"[|< 0s0®(1)Vr € [0,T] 6)

Now, to prove that model (3) is the Hyers-Ulam-Rassias stable, we assume that:
o[Li]A:[0,T] x R® — R® is a continuous mapping.

e [L»] 304 > 0 such that for each solution §,&',€ O ([0,T],R%),

& =& [|[<Oa =&, Ve €[0,T].

o[L3] Let ® € ([0,T],R") be an increasing mapping, and let Mo~ such that

fO(n)dn <Me® (1), Vi € [0,7]
0

Theorem.5.1 It is assumed that [L;] — [L3] exists, and model (3) is of the generalized Hyers-Ulam-
Aghalary type.Rassias is stable with respect to ® on the interval provided that Q (@) O < Otable with
respect to ® on the interval as long as Q (@) O < 0.

Proof Leté €O ([0, T ,R3) be a solution of model (3). Then, the unique solution of model (3) from
Theorem (4.3) is

t

§=¢(0) +Q(w)A(t,Q')+Q(w)/A(€,€(n))dTl- @)

0

On the evidence of (5), we can say that

16" =5 (0) +Q(w)A(f,Q)+6(60)({1A(5>§(71))d77 I
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s9<w>®<r>+o<w>0f®<n>dn

< (Q(w)+0(w)Mg)O(t).

So,

16-& <11 &'~ £ (0) - Q0)A1.2) ~o(w) [A(n.Z (m)a |

t

16" =5 (0) —Q(w)A(r, ) —G(w)gA(n,é (m))dn
—Q(w)A(1,Q) —o(w) [A(n,5'(n))dn

+Q(@)A ([, Q) —o() [A(n,¢'(n))dn |

S O o

<||E —£(0)— Q(0)A(1,E —c(w)(fAm,é (m)dn |
1Q(0) | AMLE) —AGE) | +o(of | (1.E (M) —AM.E () | dn

< (Q(0)+0(0)Me)O (1) + Q(w)04 || £ =& || +®(w)0AOft|| E(m—¢'(n)lldn
Now, & (0) 0 < 1, So

;i (Q(0)+0(0)Me)O(1) . o(w)0s | ,
1E-¢1= = a0, —at)0; | 160 -& ®)
The Gronwalls inequality yields
) (Q(w) + 0 (0)Mp)
16-gs [ ey o) ©
On setting Op @ = %W exp (t)] , We have
1€ —&" < 0a00(). (10)

Inequality (10) authenticated that model (3) is generalized HyersUlam-Rassias stable concerning ©.

6. Numerical Scheme

We establish a numerical scheme for the proposed model (1). The following is a system of Caputo
fractional differential equation.

§DPU (1) =Hy(t,U),
SDPE(t) =Hy(t,U), 1)
ED0V (1) = Ha (1, 0)

where
A—KU@)V(t)+BE(t) —uU(t) =H; (1,U),

KUV (1)~ BE() — AE(r) = Ha (1,E)
oU(t)—d8V(t)=Hs(t,V).
We consider the first equation of system (11) and apply the Caputo integral we have

U (1) - U (0) = %/Hl (.U (e)) (1 — &) 'de. (12)
0
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We can write the following at point ¥y, = (O + 1) Ar :

fy41
1—
Ultss1)—U(0) = Taf)) / Hy (8,U (€)) (tg.1 — €)% de. (13)
0
As aresult,
- S Iy+1

Ultg11) = U (0)+ Wj’; Y, [ HiEU @) (ton—e)" de. (14)

K=2 fe

Using the Newton polynomial, we obtain

tet1 H1 (lK_27UK—2)+Hl(lK—1,UK )—H](IK_Z,UK' )

(8—1‘,(_2)—1—

Y]
H (1, US)—2H (tx— U™ 1) (H) (12, UK 2
@) iy 1 I 21'(&)2 GO ) X (€ —tx—2) (€ —tx—1)
X (ter1 —€)° \de
(15)
As a result,
( K+l 2 o1 )
f H; (thZ,U )(IK+1 —8) de
Iy
IK+1 H, (,Kilva—l )le (tK,Q,UK‘z)
U(IK“):U(HJ—_(O % ) -I-t{ , At
o) =, (€ —tx2) (fes1 —e)“”lds (16)
K41 H]([,QUK)—ZHl(ZK,LUKfl)(Hl(IK,ZUK*Z))
+ [ 2(Ar)? o
(' (e—tx2)(E—tx1)(tr1 —€)" de )
X (ter1 —€)* de.
Consequently,
K+1 o O K—2 fit o—1 2 H, (e 1 U ) —H) (1 2, U 2)
U (t )ZUo+m Y Hi(tx2UX7?) [ (txy1—€)° de+ @)~ : ; :
K=2 It K=2
Te+1 o1
Ik
4 K K—1 K—2
1 H, (e, U )—2H1(tx71.U )(H1(IK72,U ))
o) K§1 2(Ar)?
k41 o1
X [ (e—txn)(€—tc1)(tir1 —€)" de.
Ik
(17)
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We get

U = Uy + ((w+1 ):H1 (tk 2.U%2) x [(9 =K +1)° = (8 —K)“]

+1“((a>+2 ZHI (te—1 UFY) — (2, UF2)
i K+1) (¥ —K+3+20)

L0 -K+3430)

X+21"((Acf>)+3) Z [Hi (4, U*) —2H (51, U1 + (Hy (52, UF2)) ]
_ (9 —K)*+ (30 +10) (8 —K)

(% —K+1)® {—1-2602—1—9(94—12 }

(o) | 20 —K)?+ (50+10) (8~ k)

(®-K) {+6a)2+18w+12 }

(18)

X

Similarly from the second, third, and fourth equations of the system (11), we can write

v
EO+1 Eo+r((w)+1>kz (Hz (e 2.E*2)) [(® =K+ 1)? = (¢ —K)®]

%)
b )~
(0 —K+1)? (8 ~K+3+20)
- -K)° (9 -K+3+30) .
LA 0 [ (Hy (e EY)) — 2Hy (e EF) (19)
M(0+3) =) | +Hy (t_p EF2
ke 200 -K)+(Go+10) (9 -K)
S O |
(K@ 2(19—K)2+(5a)—|—10)(19_K) )
=K {+6w2+18w+12

X

and

O
VO =Vt 85§ (s (127 2) [(0-K+1)° = (9-K)°

o U
+%k§2 [(H3 (2.V*72)) = (H3 (12, V*2)) ]

(0 —K+1)?(0—-K+3+20)
1 (9 —K)® (9 —K+3+30) 2
o & T (Hs (1)) = 2Hs (i V) .
M(@+3) =, | +H; (tk_z,Vk_z

B o] 2(0—=K)*+ (3w +10) (8 —K)

(@ =K+1) [+2w2+9w+12 }

Ca e | 280K+ (504 10) (9 —K)

(#-K) {+6w2+18a)+12 }

X

7. Numerical Simulation

In this subsection, we examine the numerical results and analysis for the Caputo unemployment
model (1) to demonstrate how fractional calculus can enhance unemployment dynamics modeling.
Using experimental parameter values from Table 1 and a step size of 4 = 0.01, the initial conditions
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are defined at a positive equilibrium: unemployment U = 17500, employment rate £ = 69400, and
vacancy rate V = 1500, taken from [6]. The time variable t = 50 represents 50 months, allowing a
view of both the immediate and extended effects of the model. Figures 1 and 2 depict the dynamics of
unemployment (U(¢)), employment (E(¢)), and vacancies (V (7)) modeled using integer-order deriva-
tives (w = 1). The fractional order @ represents the memory effect inherent in fractional calculus,
where values less than 1 introduce a higher degree of past dependence into system dynamics. When
o is less than 1, the unemployment rate decreases more rapidly, as illustrated in Figures 3, 4, and 5.
At these lower values of @, the model more accurately reflects unemployment dynamics by capturing
both short-term reactions and historical influences, which are often significant in real-world scenarios.
Lower fractional orders cause the model to respond more dynamically to changes, resulting in a reduc-
tion in the number of unemployed and skilled-jobless individuals. On the other hand, larger fractional
orders offer a broader and richer perspective of the unemployment dynamics, which became one of
the key advantages of introducing fractional derivatives capable of capturing short-term and intricate
long-term correlations. A main feature of employing fractional derivatives is that memory effects can
be incorporated when the conventional integer-order derivatives cannot. This property applies greatly
in unemployment modeling because previous state data influences interactions and policies to make
current employment rates. The models provided here show that fractional derivatives are more flexible
and realistic than integer-order models in terms of gradual unemployment dynamics. The second batch
of tests looks at what happens to the unemployment rate U, the employment rate E, and the vacancy
rate V when the job creation rate, ¢ is varied. As depicted in Figures 6, 7 and 8, a policy that raises &
( creates more jobs) is a strong instrument to combat unemployment. According to the formula of the
model when o is equal to 0.687, this shows the possibility of reducing the unemployment rate to about
7%, which organizations and governments set as their goals of employment. This implies that a job
creation rate closely around this frontier level is of significant importance to achieving large changes
in unemployment a result that fractional calculus makes visible by examining various forms of change
in the employment process, including those based on a memory component.

The graphical comparisons between the classical integer-order model (@w = 1) and fractional-order
models (@ < 1) reveal significant differences in system behavior. The integer-order model (Figures 1-
2) demonstrates abrupt changes in unemployment (U (¢)), employment (E(¢)), and vacancies (V (¢)) due
to its reliance on instantaneous dynamics, which oversimplifies real-world processes. Conversely, the
fractional-order models (Figures 3-8) capture smoother transitions and gradual adjustments, reflect-
ing memory effects and historical dependencies inherent in socio-economic systems. These results
underscore the ability of fractional calculus to provide a more realistic and nuanced representation
of unemployment dynamics, offering deeper insights into long-term policy impacts. The choice of
a fractional-order model stems from its ability to account for memory effects and hereditary proper-
ties, which are often integral to biological and socio-economic systems. Unlike classical integer-order
models that assume instantaneous dynamics, fractional-order models incorporate past influences, pro-
viding a more comprehensive understanding of system behavior. For instance, unemployment trends,
analogous to biological systems, are influenced by historical factors like prior job creation policies
and economic conditions. The fractional-order model reveals how these historical influences shape
present dynamics, as shown in Figures 3-8, where lower fractional orders (@ < 1) demonstrate more
sensitive and realistic responses. This capacity to model gradual transitions and long-term dependen-
cies highlights the biological and real-world relevance of fractional models, making them superior to
integer-order approaches in capturing complex, memory-driven processes.
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Table 1: The probable values of parameters in the model for unemployment.

Parameters Values
A 3000
B 0.01
u 0.032
o 0.035
o) 0.075
k 1.8x 107
(o] 0.1
5 = 10% ‘
u(t)
6l o)
(%] 5 [ T
2
£
3
. |
N
. \ 1
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
(0] 5 10 15 20 25 30 35 40 45 50
Time t

Figure 1: Solution of the classical order system when when o = 0.1.

= 104

u(t)

Compartment Values

0 5 10 15 20 25 30 35 40 45 50
Time t

Figure 2: Solution of the classical order system when when o = 0.687.
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Figure 3: Simulation of U(¢) when ¢ = 0.1.
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Figure 4: Simulation of E(¢) when ¢ = 0.1.
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Figure 5: Simulation of U(¢) when ¢ = 0.1.
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Figure 6: Simulation of U(¢) when o = 0.687.
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Figure 7: Simulation of E(¢) when o = 0.687.
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Figure 8: Simulation of U(¢) when o = 0.687.

8. Conclusion

Unemployment is a persistent global issue that demands sophisticated analytical approaches for
effective policy development. This study introduces a fractional-order unemployment model based
on the Caputo derivative, offering a significant advantage in capturing memory effects and hereditary
dynamics over traditional integer-order models. The graphical comparison of results under various
fractional orders (@) demonstrates the model’s robustness and flexibility. For instance, lower fractional
orders (w < 1) reveal enhanced sensitivity to historical unemployment trends, enabling more dynamic
responses to policy changes. Conversely, results at higher fractional orders align more closely with
integer-order behavior, providing a broader but less nuanced perspective of system dynamics. These
visualizations effectively communicate the model’s capacity to simulate real-world unemployment sce-
narios under different assumptions, making the results accessible and actionable for policymakers.
Numerical simulations highlight the importance of parameters such as the job creation rate (¢) and
fractional order (@), showing their influence on unemployment stabilization. The inclusion of mem-
ory effects through fractional calculus enhances the model’s accuracy and relevance, demonstrating its
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superiority over traditional methods in understanding gradual system adjustments and the cumulative
effects of past policies.

This study underscores the potential of fractional-order models to provide deeper insights into socio-
economic systems. The graphical analyses further validate the model’s utility, making its outcomes
transparent and easily interpretable. Future extensions could incorporate additional factors, such as
technological impacts and workforce reskilling, to expand the models applicability to broader socio-
economic challenges.
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