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Abstract:  

Chickenpox, another name for varicella virus, is a highly contagious illness. In this work, we use 

mathematical modelling and simulation to examine the dynamics of transmission and propose an 

SVIR model for the varicella virus in Jordan. The dynamics of the population in various classes 

are examined using a suggested model, which offers a more thorough comprehension of the 

course of the epidemic and the efficacy of control efforts. Lipschitz condition and fixed-point 

theory were also used to establish the solution's existence and uniqueness. Additionally, using 

figures and mathematics, it investigates the effects of different factors on the reproductive 

number    and sensitivity analysis of the suggested model. The Routh-Hurwitz stability criterion 

is used to determine local stability at equilibrium sites that are both disease-free and endemic.  

Lyapunov functions with the first derivative test used to establish the global stability of model 

equilibria analysis for both   >1  and   <1.  

the suggested model is numerically simulated using Matlab software to ascertain how parameters 

affect the scenarios. The findings of this study confirm the theoretical and biological phenomena 

of the model and aid in elucidating the mechanisms of varicella virus transmission and directing 

public safety policy decisions. In the conclusion, Since the varicella virus puts a lot of demand 

on the country's healthcare system, the Jordanian Ministry of Health should launch vaccination 

campaigns in order to eliminate the disease because a universal varicella vaccination is 

necessary. Long-lasting protection from varicella immunization lowers the risk of epidemics and 

promotes community health, and lowering the overall burden of varicella virus infection frees up 

funds for other health concerns. 

Keywords: Varicella virus, Routh-Hurwitz stability, Sensitivity analysis, Basic reproduction Number. 
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1. Intorduction 

Varicella virus is one of a very dangerous infectious disease. The earliest symptoms for 

this disease typically appear two to three weeks after infection. Fever, fatigue, and a lack 

of appetite were the first symptoms, which were followed by a broad rash. The rash starts 

off as red, itchy areas and soon turns into blisters, which are more common on the head, 

arms, legs, and face. Before the blisters dry out and heal, they stay there for three to four 

days. Healthy children and adults often recover in ten days [1-2]. Although paracetamol 

can be used to lower the temperature, most people don't require medical assistance. Rest 

and hydration are recommended. Infection risk can be decreased by keeping nails short 

and applying anti-itch soaps and creams [3-4].  

A vaccination was developed and tested experimentally in the 1970s and 1980s.  These 

days, these vaccinations might be either the varicella vaccine alone or the Measles, 

Mumps, and Rubella (MMR) vaccine, which combines the measles, mumps, and rubella 

vaccines [5-6]. 

 Although this virus is believed to be a mild childhood illness, it can have major effects on 

certain groups of people, such as adults and those with weakened immune systems [7-8].  

The development of mathematical methods for analysing communicable illnesses has led 

to an ideological split between public health professionals looking for workable disease 

management techniques and mathematicians seeking a thorough understanding. [9-15].  

A vaccination campaign's effectiveness can be evaluated by mathematical modelling due 

to the complexity of the virus transmission dynamics and the interaction between direct 

and indirect vaccine effects. A number of mathematical models looked at the impacts of 

varicella vaccination in an effort to add to the conversation. [16-20]. 

The main aim of this work is to use the epidemiological data currently available to 

develop and assess a Suscibtible, Vaccinated, Infected, and Recovered (SVIR) model that 

is uniquely tailored to the dynamics of varicella virus spread in Jordan. By examining the 

key parameters of the SVIR model, which aids the government in developing new policies 

and strategies for future occurrences of circumstances like the one that is currently 

occurring. It is crucial to research the dynamics of varicella virus transmission in Jordan, 

especially in light of the current circumstances, in order to act quickly before the number 
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of infections skyrockets. As indicated in table (1.1), 82856 cases of chickenpox were 

reported in Jordan between 2008 and 2021 [21-22]. 

 

                       Table 1.1 History of the varicella virus in Jordan, 2008–2021 [23] 

Year 

 

2008 200

9 

201

0 

201

1 

201

3 

201

4 

201

5 

201

7 

201

8 

201

9 

202

0 

202

1 

Varecell

a Virus 

Cases  
     

11.3

6 

6.91 9.36 6.18 6.71 7.89 4.72 6.88 6.21 3.51 1.00 1.63 

 

The immigration of Syrian refugees was responsible for 19.24% of the increase in total 

cases in 2014, while COVID-19 and the quarantine during the pandemic—particularly the 

closure of clinics and schools—were responsible for the lowest number of cases (2.44%) 

in 2020 [24]. Individuals who have contracted the varicella virus can easily spread the 

infection to people who have never had the virus or have not been vaccinated against it. 

Up to 90% of a person's close non-immune contacts will also contract it if they do[25]. It 

is predicted that the likelihood of the varicella virus spreading among susceptible people is 

approximately 0.09 [26]. 

 

2. Model assumption and formulation  

Recent years have seen a steady rise in the occurrence of chickenpox in Jordan, highlighting the 

need for a deeper comprehension of its epidemiology. The SVIR model theoretical framework of 

the varicella virus in Jordan offers a conceptual foundation for understanding the dynamics of 

varicella virus transmission as well as the factors and characteristics influencing its transmission. 

There are four compartments in the SVIR model. 

Those who are susceptible could contract the virus. Those who received the vaccine are immune 

to the virus for the rest of their lives. People who are infected with the virus and have the 

potential to spread it to others. Those who contracted the virus and recovered were immune to it 

for the rest of their lives. Figure (2.1) shows the flowchart diagram of the model, and how the 

proposed model divided the entire population size, T, into four disease stages: susceptible (S), 

vaccinated (V), infected (I), recovered (R), and the interaction between these four stages. 
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Figure 2.1: Flowchart diagram of the model 

 

 

 The following system of nonlinear ODEs is obtained by applying the Mass Action 

Law of infectious diseases to the Varicella epidemic in Jordan: 
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and  

                                                   ( )    ( )   ( )    ( )    ( )    

                                 (2) 

SVIR are the four compartments of the population (T), each of which is a function of 

time (t) that is determined by a system of differential equations. Tables (1) and (2) contain a 

list of all the definitions and descriptions of the variables and parameters utilized in the 

model.  
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Table 2.1 The model's variables 

Variables Descriptions 

  Number of total population 

  People who could contract the varicella virus 

 

  People who have received vaccinations 

 

  People infected with the varicella virus 

 

  People who have developed immunity and recovered from infections 

 

 

Table 2.2 The model's parameters and their values 

 

 

3.   Model Analysis  

3.1  Positive Bounded Solutions and Positively Invariant Region 

We explores how the proposed model might be applied in real-world scenarios with positive and 

bounded outcomes [27,28]. We have       
 

 

We need to establish the norm: 

                                                               ‖ ‖         | ( )|.       

                                                (3) 

Then 

Parameters Descriptions  

  The recovery rateThe rate of recovery 1/14 

  The rate of natural death   0.0019 

π Birth rate 0.03 

  The rate of vaccination among susceptible individuals 

 

0.05 

  Disease transmission rate 0.24 

  The vaccine's effectiveness in preventing infection 

 

0.92 

  The rate with which vaccinated individuals become 

vulnerable due to vaccine failure 

 

0.08 
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                                        ( )   ( )   (   ) ,                                                            

(7) 

Lemma 3.1 Assume that all the initial conditions are non-negative in   
   for the system then the 

region    * (       )     
     ( )     ( )     ( )     ( )    + is positively invariant. 

Proof:  From the given model equations, we have the followING 

                                    
  

  
|
   

                                       

                                    
  

  
|
   

                                                  

                                     
  

  
|
   

           

                                                                         (8) 
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|
   

                                                          

Therefore, the region   is positively invariant and model (1)'s solution will stay inside  . 

 

3.2 Equilibrium Points and Qualitative analysis of the model 

As we mentioned in equation (2), T(t) represents the total population of Jordan, which as of 

the end of 2021 was about 10,888,834 based on the Statistical Report of Communicable 

Diseases in Jordan. It is possible to rewrite each compartment as a proportion of the total 

population to obtain, 

         ( )  
 ( )

 
,    ( )  

 ( )

 
         ( )  

 ( )

 
   ( )  

 ( )

 
                                                          

(9) 

  ( )  
 ( )

 
   ( )    ( )   ( )    ( )                                                       (10) 

  can be the equilibrium point of the SVIR model if    (  
    

    
    

 )   This SVIR 

model system has two equilibrium points: 

1. When      ,   , The point of disease-free equilibrium (DFE) is attained. 

2. When     ,    is the point of endemic equilibrium. 

 

Assuming that there is no infection, we can replace      and       in system (1). 

Consequently, the DFE point, or infection free equilibrium, is 

 

   (   
             )  .

 

(   )
 

  

(   )(   )
    /                                      (11)                                                            

Equations (1) will be utilized and solved for    in order to determine the system's 

second equilibrium point while presuming the presence of the virus. 

 

   
 

       
  ,                                                              (12) 

Solve (1) for    to have, 

   
  

(   
     )(       

 )
                                                   (13) 

Now, substitute (12) and (13) in (1), we have, 

  

       
  

   

(       
 )(   

     )
          (14) 

rearrange equation (14) in a quadratic equation form, to have, 

    
       

    (   )        (15) 

where,                 (   )                (   ), (   )   (   )-       
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   (   )(   )(   )            
  

(   )(   )
 

   

(   )(   )(   )
    

Then we get, 

  
 
   
 
    √  

       (   )

   
  then,      and   

      

Consequently, the second equilibrium point of the system, sometimes referred to as 

the endemic equilibrium point, is 

   (  
    

    
    

 )  .
 

       
  

  

(   
     )(       

 )
   

   /                             

(16)       

 

3.3 Basic Reproduction Rate 

In a population that is completely susceptible, the basic reproduction number (  )can 

be defined as the estimated number of secondary infections that a certain individual causes. 

By using (  ), it is possible to accurately predict whether or not an infectious disease will 

spread throughout a population and cause a pandemic [29]. A few estimated basic 

reproduction rates are shown in table (3). Because of differences in population size rates, 

environmental influences, contact structure, and surrounds, different populations of people 

may be associated with different values of (  )for the same illness. 

Table 3 The infectious disease's estimated (  )   [30] 

The disease (  ) 

Rubella 6-7 

Influenza 3-4 

Chickenpox 10-12 

Smallpox 3.5-6 

The disease of Foot and 

mouth 

3.6-4.6 

Measles 16-18 

Dengue 1.3-11.6 

 

The Next Generation matrix is used to determine the fundamental reproduction number 

[31]. Any nonlinear ODE system was defined using this method as 

        ( )    ( )                                                      (17) 

and    can be expressed as 
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     (   )    (  ).                                                     (18) 

where    is the infection’s rate to the     stage,   (  ) is the input rate for changing to     

stage,   (   ) is the result rate of     stage, and if   ( ) is zero, the eigenvalues of the 

differentiation of  (  ), should be negative real ones. 

Lemma 3.2 [32] Let the disease-free equilibrium point to be    , then the differentiation of 

 (  ), and the differentiation of  (  ), could be written as: 

  [
   

   
(  )],    [

   

   
(  )]                                                                        (19) 

Therefore, the linearization of the SVIR model's ordinary differential equations is necessary 

for the differentiation of the fundamental reproduction number. Lemma (3.2) can be written 

as, 
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⌉,                  ⌈
    

      
 

   
 

  
⌉                       (21) 

 To have two eigenvalues of the matrix      , that are (0, 
    

      
 

   
) . 

      ,  
  -  

    
      

 

   
,    (22) 

Let substitute      and      in equation (22) to have, 

   
  

(   )(   )
 

   

(   )(   )(   )
 

  (   )    

(   )(   )(   )
                   (23) 

 

Which is similar to k value in (15), if (  )   1, the infectious illness is under control and 

the disease is in the free stage; if (  )    , the virus is spreading and the pandemic is 

beginning. 

  

 

 

3.4 Sensitivity Analysis of     

 

A specific parameter in λ can be used to generate    using the normalized local sensitivity 

index, and this can be expressed as     
   

   

  

 

  
 . With this updated definition, we can now 
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compute the indices below using table (2), which will provide   for every parameter that 

appeared in [33]. 
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As stated before, an infectious disease is vanishing if    < 1 and spreading if   > 1. The 

fundamental reproduction number    is created using the next generation matrix, which 

served as our indication to assess the possibility for infectious diseases.  

Using equation (22) and the number of actual cases listed in table (1), we may determine 

   for the varicella virus in Jordan each year. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Jordan's varicella virus   values from 2008 to 2021 
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The situation in Jordan was summarized in figure (2), which makes it clear that since 

2016, there has been a significant drop in    and that the number of cases has been brought 

under control. Jordanian health officials also publicly negotiated their strategies for combating 

infectious diseases from 2016 to 2020, which included adding more vaccinations, such as the 

varicella virus vaccine, to the country's national immunization program [34]. 

 The varicella virus, a serious viral infection, is nevertheless highly transmissible. It is 

unclear how many instances there are of varicella in Jordan and what the statistics are. The 

local sensitivity analysis will be used to show how each and every parameter affects   . By 

replacing the parameters’amount from table (2) into the equations from (24) to (29), the 

sensitivity values can be found. The calculated sensitivity are shown in Table 4. 

 

 

 

 

 

Table 4 Each parameter's sensitivity values in    

 

Sensitivity   
     

     
     

     
     

   

Sinsitivity 

Values 

0.98 0.59 -0.70 -0.61 -0.02 0.02 

 

 

Table (4) allows us to determine how each parameter affects   . To begin, the transmission 

rate β shows that increasing it by, say, 10% will cause    to grow by the same percentage, or 

10%. 

 

 

3.5 Existence and Uniqueness  

By proving that the SVIR model's solutions exist and are unique, researchers can 

validate the model's , demonstrate the model's dependability, and enable in-depth analysis 

and prediction of infection dynamics within a population. They can also establish a strong 

mathematical basis for understanding the model. Consider the following form of the first-

order ordinary differential equation: 

  ̀   (   )               (  )            (24) 
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Let, 

     (       )  , 

       (       )  , 

               (   )  ,  

and 

               .                 

We now have two theorems [35] that demonstrate the SVIR model's existence and 

uniqueness.  

 

Theorem 3.1 (Uniqueness analysis of the solution) 

Let   represents the domain, and  (   ) satisfies the Lipschitz condition, then  

|    |     ‖       ‖   (        )    (             )         (25) 

and, 

‖ (    )   (   )‖   ‖      ‖      (26) 

where (26) satisfies if, 

{
   
   

             

is bounded in the domain T and continuous. 

 

 

Lemma 3.3 

If the partial derivative of f(t,z) is continuous 
   

   
 , It satisfies a Lipschitz condition in R on a 

bounded closed convex domain of real number R.  

 

Let the domain be, 

             (27) 

Afterward, if a bounded solution is discovered in the form of,         

 

Theorem 3.2 (Existence Analysis of the Solution) 

In order for (26) and (27) to hold, let T represent the domain defined in (25) as follows. The 

model system of equations (1) then has a solution that is bounded in domain T. 

Proof: Let, 
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     (       )  ,                                       (28) 

       (       )  ,                                        (29) 

               (   )    , and     (30)                            

                             (31) 

 

to show that 
   

   
 are bounded and continuous, the partial derivatives will be determined. Take(28), 
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Similarly, from equation (29), we get, 
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From   (30), we havet, 
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From equation (31), to have,         
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|  | |       

   

   
   |

   

   
|  | |      

   

   
   |

   

   
|  | |      

   

   
    |

   

   
|  |  |      

The domain T has a single solution to the model system of equations (1), as a result of the 

theorem (3.1), which makes it evident that all of the partial derivatives are bounded and 

continuous. 

 

 

4. Analysis of the Stability of the Model 

We must specify the approach we will take in order to investigate the stability of the two 

equilibrium points of the SVIR model, which contains nonlinear differential equations.  

According to the Hartman-Grobman theorem, a continuous function with a continuous inverse 

in the vicinity of this point into    exists if the linearization of the equations' solution has 

neither zero nor imaginary eigenvalues. 
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Thus, Jacobian matrix can be written for (         ) to be 

  ⌈

 (       )            
  (       )     
                  

⌉             (32) 

 

4.1 Local Stability of DFE 

The disease-free equilibrium point (DFE), gives 

 

  ⌈

 (   )            
  (   )     
              

⌉   (33) 

We can state that the DFE point is locally asymptotically stable if we demonstrate that 

the eigenvalues of the Jacobian matrix contain a negative real portion [36].  

We discovered three DFE eigenvalues using Maple program, which are 

    (   )  

    (   )  

                

It is found that    and    have negative real values. Now we have to check    and check if it is 

negative, it means our DFE is locally stable. 

               
             
       
   

    

which is the same value of   , that means,       , Consequently, we can declare our 

system to be locally stable, when     . While if     , then    is unstable. 

4.2 Local Stability of the Endemic Point ((Routh-Hurwitz stability criterion) 

Apply this matrix now to the system's second equilibrium point, also known as the 

endemic equilibrium point, as shown in equation 3.25 to obtain, 

  ⌈

 (       
 )            

  (   
     )     

   
    

             

⌉    

                           (34) 

By rearranging the parameters elements in     in the matrix (34) [37] then, we have: 

 (       )  
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Thus,                

Then, we get, 
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⌈
⌈
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⌉
⌉
 

.    (35) 

Then, 

  ( )        
         , where    represents all the real coefficients for all 

           . When q(λ)=0, the roots of this polynomial are all negative or have a 

negative real component if and only if every Routh-Hurwitz matrix's determinant is 

nonnegative [38]. The following outcomes are obtained by applying the Routh-Hurwitz 

stability equation and theorem 3.6: 

The characteristic equation for (35) matrix is, 

      
     

        

where, 

   
 

  
  

   
 

  
                         

   
 

  
   

   
   

      
   

     

                                      
   

  
     

   
  

 

 

  
  

     
   

 

  
     

now, if           , In order to verify that the endemic equilibrium point is locally stable 

according to the Routh-Hurwitz stability criterion, we substitute the final inequality to have: 
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Then, the endemic equilibrium point is stable 

 

4.3   Global stability using Lyapunov for Disease-free Equilibrium 

Theorem 4.1. [34] When the reproductive number    < 1, the system is globally asymptotically 

stable at DFE, while the reproductive number    > 1 makes the system globally asymptotically 

unstable at DFE. 

Proof: Think about the Lyapunov function in this way: 

 (           )  (          
  

 
)  (          

  

 
)     .   
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The following outcome is obtained by applying the derivative with regard to t on both sides: 
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At this point, their derivative values can be used as follows: 
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After some computations, we have 
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From above equation,  
 𝑊

  
          < 1. 

If                             then 
 𝑊

  
    

Consequently, it may be said that proposed system is globally asymptotically stable at DFE. 

 

4.4 Global stability using Lyapunov for Endemic Equilibrium 

All of the independent variables in the model are set using the endemic Lyapunov function; 

 in this instance,  (           ), L < 0 represents an adverse equilibrium. 

Theorem 4.2. [34] When the reproductive number    > 1, the system is globally asymptotically 

stable at endemic equilibrium, while the reproductive number    < 1 makes the system globally 

asymptotically unstable at endemic equilibrium. 

Proof: Think about the Lyapunov function in this way: 
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/  .          
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Applying the derivative with respect to t on both sides yields the following result: 
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At this point, their derivative values can be used as follows: 
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To make things simpler, we may rephrase the relation above like this: 

dL

dt
                                                                                          (45) 
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If       then  
dL

dt
  . 

If                           then 

         
dL

dt
   . 

For the proposed model, we deduce that the biggest compact invariant collection in 
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{(           )     
dL

dt
  } .                                                                (46) 

 

is the considered model's endemic equilibrium. We can deduce that endemic equilibrium is 

globally asymptotically stable using Lasalle's invariance idea if     .   

 

 

 

5. Resutls and Discussion 

Although the situation is different for the recovery rate θ and the vaccination rate for the 

susceptible a, we can observe that a 10% rise in θ and a will cause    to drop by 7.04% and 

6.08%, respectively, which makes sense.    will rise by 0.20% for the parameter α, which 

measures the rate at which vaccinated individuals contract the virus due to vaccination failure, 

and fall by 0.17% for the parameter c, which measures the rate at which vaccination confers 

immunity from the virus.   will rise by 5.91% if u is increased by 10%. Figures (3)–(8) provide 

a graphic representation of the parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Varicella virus-infected individuals percentage as calculated by the 

model using the initial θ value in Table (3) and a 10% increase in the θ parameter. 
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Figure 4: The model calculated the rate of the individuals infected with the 

varicella virus using the original β value in Table (3) and an increase of 10% in 

the β parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The model predicted the rate of the individuals infected with the varicella 

virus using the original γ value in Table (3) and increasing the γ parameter by 10%. 
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Figure 6: The model calculated the rate of the individuals infected with 

the varicella virus using the original α value in Table (3) and an increase of 10% in 

the α parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The model predicted the rate of the individuals infected with the varicella 

virus using the original μ value in Table (3) and increasing the μ parameter by 10%. 
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Figure 8: The model predicted the rate of the individuals infected with the varicella 

virus using the original τ value in Table (3) and increasing the τ parameter by 10%. 

 

We examined the impact of the parameter on the percentage of the individuals that 

infected by the virus, as shown in the preceding graphs, and the outcomes of the 

system simulation matched the figures computed in table (4). Beginning with the 

impact of raising the transmission rate by 10%, as shown in the graph that the rate of 

infection grows as a result of this change in figure (3). Additionally, figure (6) 

illustrates how the infection would increase if the vaccine failure increases. 

Conversely, as illustrated in figures (4) and (5), a rise in the recovery and 

immunization rates will reduce the spread of infection among people.  

In addition to these two factors, figure (8) shows a graph that illustrates if 

vaccinations are successful in providing immunity and whether inter-individual 

infection will decrease if the rate of transfer from the immunization compartment to 

the recovery compartment increases. Sensitivity analysis, which evaluates how 

parameter changes impact the model's output and offers insights into the model's 

robustness and dependability, is essential to this model for the SVIR of varicella 

virus. Finding the parameter that has the biggest influence on the model's output is 

one of these functions. Professionals can concentrate on accurately identifying or 

assessing this crucial element.  
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Sensitivity analysis is frequently used within the context of the SVIR model 

to pinpoint characteristics that significantly affect the dynamics of the varicella 

virus disease. These factors include the availability of vaccinations, their efficiency, 

the length of immunity, and the frequencies of interactions. 

Table (2), includes parameter values for the SVIR model's set of equations in 

(1),  will be used in the model simulation. It takes into account the state of infection 

in Jordan as well as the manner in which individuals move from susceptible, 

vaccinated, or infected to recovered. We began our model with the assumption that 

the population will transition from a disease-free state to one of endemicity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: During the outbreak, different compartments’ dynamics with            
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Figure 10: The several compartments' dynamics during the outbreak with     

     

 

  

When the initial proportion of diseased people is 0.05 and the vaccination rate is 0.24, as 

shown in Figure (9), As we take the beginning value of 0.71, it is evident that the percentage 

of susceptible individuals begins to decline over time, while the infected ratio begins to rise 

and the individuals move to the recovery compartment over time. In contrast, the vaccination 

rate drops to 0.05 in figure (10) while the proportion of diseased people remains constant. As 

a result, in comparison to graph (9), the number of infected cases increases quickly over time.  

The number of recovered people rises as a result of people continuously migrating from the 

infected compartment to the recovered. Both figures demonstrate how vaccination-susceptible 

individuals might lessen the spread of the virus and, consequently, the total burden of illness. 

People can avoid contracting the varicella virus and developing health issues by being 

vaccinated. Long-lasting protection from varicella immunization reduces the likelihood of 

epidemics and fosters community health.  

Reducing the overall burden of varicella virus infection allows for more money to be allocated to 

other health issues. Additionally, by assessing how parameter changes affect the effectiveness of 

control techniques, sensitivity analysis helps to achieve the best possible performance of 

therapies. By looking at how changes to important parameters impact the outcomes of vaccine 

schedules, extra doses, or particular therapies, policymakers can identify the most important 

aspects and develop policies that significantly reduce the incidence of varicella.  

 

6. Conslusion 

The dynamics of the SVIR model are examined in this study, and the model's numerical 

simulation was supplied. The equilibrium points of the model were identified, as well as the 

existence and uniqueness of the model's solution, local stability, and the basic reproduction 

number   . Existence and individuality Proofs confirm that the model's predictions are 

accurate and useful for decision-making. We discovered that the endemic equilibrium point 

is constant and that disease is consistently present amongst individuals when   >1. 

Nonetheless, it is shown that when    <1, the disease-free equilibrium is preserved. Here, 

vaccination acceptance, adherence to control measures, and varicella prevention measures 
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will all be aided by public health awareness campaigns, educational programs, and 

behavioural interventions. The ability to handle varicella patients and the possible burden on 

healthcare systems during outbreaks will also be evaluated, if needed, using the healthcare 

resources, such as hospital beds and medical staff. By altering the parameter values while 

holding all other health-related variables constant, we were able to evaluate the sensitivity of 

  and provide a visual description of it.  

In the SVIR model of the varicella virus, sensitivity analysis of    is crucial. It helps 

determine important parameters, evaluate model adaptability, and increase the efficacy of 

intervention strategies. Researchers can better understand the dynamics of infectious 

illnesses, evaluate the potential effects of different control measures, and influence public 

health initiatives to slow the spread of disease by doing sensitivity analysis of    in the SVIR 

model. In conclusion, it should be noted that the SVIR model does not take into 

consideration changes in population size or demographic composition brought about by 

immigration and Fixed assumptions cannot completely convey the complications introduced 

by real-world vaccination rates and coverage. By doing so, disease dynamics can be more 

accurately represented, and better forecasts and policy recommendations can be made.  

Since the varicella virus places a significant strain on the nation's healthcare system, the 

Jordanian Ministry of Health should set up vaccination campaigns to eradicate the illness. 

This is because a universal varicella vaccination is required. Long-lasting protection from 

varicella immunization reduces the likelihood of epidemics and fosters community health. 

Reducing the overall burden of varicella virus infection allows for more money to be 

allocated to other health issues. By using fractional-order differential equations instead of 

regular differential equations, we can simulate real-world processes while reducing the 

inaccuracies brought on by the missing parameters. Finally, more research is recommended, 

especially for diverse and non-constant populations.  With the information acquired from this 

study, governments and medical organizations may create effective plans that lessen the 

effects of the varicella virus and protect individuals who are most impacted. 
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