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Abstract: These days, infectious illness mathematical modeling is a major global trend. With the use
of current data, mathematical models enable us to predict the occurrence of disease outbreaks in the
future. In this work, we use a fractal fractional operator with two fractal and fractional orders to solve a
system of fractional differential equations using a Caputo Fabrizio type kernel. A six chambered model
with a single source of chlamydia is studied using the concept of fractal fractional derivatives with
nonsingular and nonlocal fading memory. The fractal fractional model of the Chlamydia system can
be solved by using the characteristics of a non-decreasing and compact mapping. Initially, we calculate
the system’s equilibrium points and fundamental reproduction number R0. We then look at the system’s
stability at the equilibrium point. Through the application of the Picard Lindelof methodology, we
establish the existence of a unique solution for the given fractional CF-system of the hearing loss model
and use fixed point theory to examine the stability of the iterative process. By taking into account the
therapy as a control technique to lower the number of infected individuals, the system’s optimal control
is established. Calculating the estimated solution of the system involves applying the Euler technique
for the fractional order Caputo Fabrizio derivative. In two scenarios, R0 < 1 and R0 > 1, we provide
a numerical simulation of the disease’s spread with regard to the basic reproduction number and the
transmission rate. We compute the results for various fractional order derivatives and compare the
findings in order to examine the impact of the fractional order derivative on the behavior and value
of each variable in the model. Additionally, we examine the sensitivity of R0 with regard to each
model parameter and ascertain the influence of each parameter, taking into account the significance
of reproduction number in the persistence of disease transmission. Finally, it can be said that once
more, fractional operator mathematical models can help in making better decisions on how to manage
financially turbulent situations.
Keywords: Chlamydia Model; Existence; Unicity and stability; Numerical scheme.

1. Introduction

The most common bacterial sexually transmitted infection in the UK is called Chlamydia tra-
chomatis. The age groups with the highest prevalence of chlamydial infection include women between
the ages of 16 and 19 and men between the ages of 20 and 24. Since most women with chlamydial
infection are asymptomatic, some of them end up developing pelvic inflammatory disease as a result of
not receiving treatment [1]. In 1999, there were approximately 92 million cases of chlamydia world-
wide, comprising 42 million cases in men and 50 million cases in women [2]. Even though genuine



resistance to Chlamydia trachomatis is uncommon, cases of recurrent chlamydia infections are still
being reported after treatment with a single one g dose of azithromycin or a week’s worth of doxycy-
cline. This raises concerns regarding the possibility of azithromycin treatment failure. Even though
reinfections account for the majority of repeat positive cases, new research suggests that treatment fail-
ure might also be a factor in [3]. A unique developmental cycle and obligatory intracellular lifestyle
are shared by the evolutionarily distinct group of eubacteria known as the chlamydiae, which have
been thoroughly studied in [4] under ideal cell culture conditions. We design and assess a Chlamydia
trachomatis vaccination model with cost-effectiveness optimum control analysis. In [5] shows that
the model’s disease-free equilibrium is locally asymptotically stable when the reproduction number is
less than unity. This allows researchers to examine the impact of various treatment combinations on
the host dynamics of chronic genital chlamydial infections, which are characterized by the presence
of IFN-γ-induced chlamydial persistence. Akinlotan et al. [6] create a mathematical framework of
within host Chlamydia dynamics. A mathematical model that describes the kinetics of a Chlamydia
trachomatis infection in a human carrier is described by Emuoyibofarhe et al. [7]. Relevant features
like drug administration-assisted recovery were included in the model. The real solution looked at
the model’s solutions’ existence and uniqueness. We analyze the model’s stability both locally and
globally. Researchers have provided a model to assess chlamydia therapeutic options in [8, 9, 10, 11],
where they have presented some innovative studies on an epidemic model. Atangana [12] combined the
two relevant fields of fractional and fractal calculus into a new class of concepts known as fractalfrac-
tional ideas. These operators have two components: the fractal dimension and the order. Differential
equations with fractalfractional derivatives, according to [13, 14], convert the dimension and order of
the putative system into a rational system. It takes fractional calculus to solve issues in the real world.
It is frequently used in many different fields related to science, engineering, and finance. The charac-
teristics of the fractional calculus that set it apart comprise fractional order derivatives and fractional
integrals. The area of fractional calculus and its diverse aspects have garnered greater attention from
scholars in recent times. This is because genetic mutations are an essential tool for understanding how
various biological systems operate dynamically. The non-local characteristics of these component op-
erators, that the integer separator operator [15, 16, 17, 18, 19, 20] lacks, give them their strength. The
COVID-19 transmission pattern was examined in three severely affected nations in order to provide
context for the modeling of COVID-19 transmission in [21]. For the time discretization and spatial dis-
cretization, respectively, [22, 23, 24, 25, 26, 27, 28] has used redefined extended B-spline functions and
the Caputo time fractional derivative. In this work, we constructed several fractal fractional operators
and employed various fractal differential operators [29, 30]. The duration of the fractional advection
diffusion equation’s approximate solution. Further information is provided in [31, 32, 33, 34].

A potential approach with several benefits is the use of fractalfractionaloperators with fractional
and dual fractal orders in research studies. This method captures complicated patterns and abnormal-
ities that other methods would miss, allowing for a more nuanced and detailed depiction of complex
problems by simultaneously exploiting two orders. This improves our comprehension of complex pro-
cesses and makes it easier to create more reliable mathematical models that are applicable to a wide
range of academic fields. Using fractal fractional operators could transform a variety of industries,
from image analysis to signal processing, by providing a flexible toolkit to tackle problems requiring
a greater understanding of complex, multi-fractal phenomena. Accepting this novel paradigm opens
up new avenues for research and discoveries by promoting a more exact and comprehensive approach
in scientific studies. In this case, we analyze a fractalfractional model of contaminated lakes in terms
of several distinct attributes. The following are the remaining sections of this study article: An intro-
duction is given in section 1. The proposed framework and a number of fundamental fractional order
derivatives that are useful in addressing the epidemiological framework are thoroughly presented in
section 2. Section 3 provides a generalized version of the system and examines the qualitative features
of the suggested model, such as existence and uniqueness and illness-free equilibrium. Section 4 ex-
amines the stability research of the proposed framework, including stability of Sumudu Transform. We
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examine the numerical scheme of the Caputo Fabrizio kernel in section 5. Sections 6 and 7 include the
numerical simulations and findings, respectively.

2. Chlamydia viral mathematical model with Caputo Fabrizio

A deterministic compartmental system of the dynamics of Chlamydia illness transmission is pre-
sented. Researchers are looking into the causes and recurrence of potential epidemics. In order to
understand viral transmission, let’s examine the Vellappandi et al. [35] compartmental mathematical
epidemic system and a few of its notable features. The following set of nonlinear ordinary differential
equations can be used to illustrate the framework.

CFDα,β
0,t S(t) = (1−φ)Λ− βS(I+ξ T )

N +wV −µS,
CFDα,β

0,t V (t) = φΛ− (µ +w)V − β (−π+1)V (ξ T+I)
N ,

CFDα,β
0,t E(t) = (−π+1)V β (ξ T+I)

N + βS(I+ξ T )
N −E(σ +µ)+(−p+1)θT + εβ (I+ξ T )R

N ,
CFDα,β

0,t I(t) = σE− (γ +η +µ +δ1) I + pθT,
CFDα,β

0,t T (t) = ηI− (µ +θ +δ2 + τ)T,
CFDα,β

0,t R(t) = γI− εβR(ξ T+I)
N +T τ−µR.

(1)

where the starting circumstances are

S(0) = S0 ≥ 0,V (0) =V 0 ≥ 0,T (0) = T 0 ≥ 0,E(0) = E0 ≥ 0, I(0) = I0 ≥ 0,R(0) = R0 ≥ 0. (2)

CFDα,β
0,t represents the fractal fractional derivative with Caputo Fabrizio type kernel of fractional and

fractal orders α ∈ (0,1] and β ∈ (0,1], respectively. The proposed framework splits the entire popula-
tion N into 6 parts at a particular time t. We developed the Chlamydia virus model’s fractional order
mathematical variant with vaccination in order to deal with the most Chlamydia model by using the
most effective individuals and accounting for six (6) parts of populations. S(t) symbolizes the people’s
unvaccinated susceptibility individuals over time t, V (t) represents the population’s vaccinated suscep-
tibility individuals over time t, E(t) represents the population’s exposed individuals over time t, I(t)
represents the population’s infected individuals over time t, T (t) represents the population’s treatment
individuals over time t and R(t) represents the population’s recovered over time t. Table 1 contains the
parameters defined for the suggested model.

Table 1: The parameters of the proposed system are discussed.

φ Percentage of people who were recruited
Λ Recruitment percentage
β Rate of contact
ξ Adjustment factor
N Whole papulation
ω Declining vaccination rate
µ Spontaneous death rate
π Vaccine’s efficacy
σ The speed with which those who are exposed spread infection
p The percentage of patients not responding to treatment
θ Treatment failure rate
ε Rate of reinfection
γ The speed at which the illness kills me
η The speed at which I go toward T
δ1 The speed at which the I kills me
δ2 The speed at which the T kills me
τ The speed at which T transitions to R
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Thus, everyone in the population is ascertained via

N(t) =V (t)+T (t)+S(t)+R(t)+E(t)+ I(t). (3)

2.1. Fundamental Ideas of the Fractional Operator
Firstly, we jot down the following fundamentals of fractional calculus that will be useful in our

investigation. This manuscript’s current section reviews a few basic and auxiliary ideas regarding
fractional operators.

Definition 2.1. Let n = [α] + 1 and assume that α ∈ (n− 1,n). The fractional derivative of Caputo
type for a function F̂ ∈ AC(n)

R ([0,∞)) is represented by

CDα,β
0 F̂(t) =

∫ t

0

(t−C)n−α−1

Γ(n−α)
F̂(C)dC, (4)

if the integral has a finite value [36, 43].

Definition 2.2. Subsequently, two Italian mathematicians, Caputo and Fabrizio, create a new frac-
tional operator with no singular kernel [38]. They presuppose that F̂(t) ∈ H1(a,b) and a < b. Next,
for a function F̂(t), the Caputo Fabrizio or (CF) derivative of an arbitrary order α ∈ (0,1) is given by

CFDα
a F̂(t) =

(2−α)M(α

2(1−α)

∫ t

a
exp
(
−α(t−C)

1−α

)
F̂ ′(C)dC, (5)

where M(α) is a normalization function depending on order α and M(0) = M(1) = 1.
Moreover, CFD(α+n)

a F̂(t) =CF D(α)
a (DnF̂(t)) holds for n≥ 1 and α ∈ (0,1) in [39]. A new explicit

formula for the function M(α) was discovered in 2015 by Losada and Nieto [40] as M(α) = 2
2−α

,
where α ∈ (0,1). The fractional CF derivative for F̂(t) in this instance is represented by

CFDα
0 F̂(t) =

(1
1−α

∫ t

0
exp
(
−α(t−C)

1−α

)
F̂ ′(C)dC. (6)

It is evident that the equality CFDα
0 F̂(t) is identical to F̂(t) = A∗, where A∗ is an arbitrary constant,

for all α ∈ (0,1).

Definition 2.3. Furthermore, the fractional CF-integral of order α ∈ (0,1) for F̂(t) was defined by
Losada and Nieto as follows

CFJ(α0 F̂(t) =
2(1−α)

(2−α)M(α)
F̂(t)+

2α

(2−α)M(α)

∫ t

0
F̂(C)dC, (7)

for any t > 0 [40].

Definition 2.4. To achieve this, build the ensuing set by

A = {F̂(t) : ∃ℵ, c1,c2 ≥ 0 sothat|F̂(t)|< ℵexp
(

t
ci

)
}, (8)

where t ∈ (−1)i× [0,∞). Next, the Sumudu transform of a function F̂(t) ∈ A is defined as follows and
is represented as ST[F̂(t)](s) = F̂(s).

ST[F̂(t)](s) = F̂(s) =
1
s

∫
∞

0
exp

t
s
F̂(C)dC, (9)

where s ∈ (−c1,c2) for all t ≥ 0 and the inverse Sumudu transform of F̂(s) is denoted by F̂(t) =
ST−1[F̂(s)]. Let us now suppose that F̂(t) is a function, given the existence of its CF-derivative of
fractional order. The fractional CF-derivative for F̂(t)’s Sumudu transform is defined as

ST[CFD(α)
0 F̂(t)](s) =

M(α)

1−α +αs

(
ST[F̂(t)]s− F̂(0)

)
, (10)

for all t > 0 [41].
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3. Qualitative Evaluation of the Suggested Framework

We are currently conducting a qualitative analysis of our model of infectious disease with vaccina-
tion, which is expressed as a frame work of nonlinear differential equations (1), to better understand
its features and the variables that govern the dynamics of infectious disease transmission.

3.1. Existence and Uniqueness of Suggested Model Solutions
Next, we use the Caputo-Fabrizio derivative to examine the following fractional model of Chlamy-

dia infectious. We start by demonstrating that our framework (1) has a solution. To that, we apply fixed
point theory. Let us first define the Banach space M =W 6, where W = w(J,R), in order to perform our
qualitative analysis.

CFDα,β
0,t S(t) = (1−φ)Λ− βS(I+ξ T )

N +wV −µS,
CFDα,β

0,t V (t) = φΛ− (µ +w)V − β (−π+1)V (ξ T+I)
N ,

CFDα,β
0,t E(t) = (−π+1)V β (ξ T+I)

N + βS(I+ξ T )
N −E(σ +µ)+(−p+1)θT + εβ (I+ξ T )R

N ,
CFDα,β

0,t I(t) = σE− (γ +η +µ +δ1) I + pθT,
CFDα,β

0,t T (t) = ηI− (µ +θ +δ2 + τ)T,
CFDα,β

0,t R(t) = γI− εβR(ξ T+I)
N +T τ−µR.

(11)

We apply the Picard Lindelof technique to determine whether solutions exist for the modified fractional
system (11) of the Chlamydia infectious model. The Chlamydia infectious model (11) must first be
transformed into a fractional integral equation in order to accomplish this.

S(t) = S0 +
2(1−α)

(2−α)M(α)

{
(1−φ)Λ− βS(I +ξ T )

N
+wV −µS

}
+

2α

(2−α)M(α)

∫ t

0

{
(1−φ)Λ− βS(C)(I(C)+ξ T (C))

N
+wV (C)−µS(C)

}
dC,

(12)

V (t) =V0 +
2(1−α)

(2−α)M(α)

{
φΛ− (µ +w)V − β (−π +1)V (ξ T + I)

N

}
+

2α

(2−α)M(α)

∫ t

0

{
φΛ− (µ +w)V (C)− β (−π +1)V (C)(ξ T (C)+ I(C))

N

}
dC,

(13)

E(t) = E0 +
2(1−α)

(2−α)M(α)

{(−π +1)V β (ξ T + I)
N

+
βS(I +ξ T )

N
−E(σ +µ)+(−p+1)θT

+
εβ (I +ξ T )R

N

}
+

2α

(2−α)M(α)

∫ t

0

{(−π +1)V (C)β (ξ T (C)+ I(C))
N

+
βS(C)(I(C)+ξ T (C))

N
−E(C)(σ +µ)+(−p+1)θT (C)+

εβ (I(C)+ξ T (C))R
N

}
dC,

(14)

I(t) = I0 +
2(1−α)

(2−α)M(α)
{σE− (γ +η +µ +δ1) I + pθT}

+
2α

(2−α)M(α)

∫ t

0
{σE(C)− (γ +η +µ +δ1) I(C)+ pθT (C)}dC,

(15)

T (t) = T0 +
2(1−α)

(2−α)M(α)
{ηI− (µ +θ +δ2 + τ)T}

+
2α

(2−α)M(α)

∫ t

0
{ηI(C)− (µ +θ +δ2 + τ)T (C)}dC,

(16)
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R(t) = R0 +
2(1−α)

(2−α)M(α)

{
γI− εβR(ξ T + I)

N
+T τ−µR

}
+

2α

(2−α)M(α)

∫ t

0

{
γI(C)− εβR(C)(ξ T (C)+ I(C))

N
+T (C)τ−µR(C)

}
dC.

(17)

Now, we define the Picard iterative method as follows (m = 0,1,2, ...), paying careful attention to
equations (12)-(17).

Sm+1(t) = S0 +
2(1−α)

(2−α)M(α)

{
(1−φ)Λ− βSm(Im +ξ Tm)

N
+wVm−µSm

}
+

2α

(2−α)M(α)

∫ t

0

{
(1−φ)Λ− βSm(C)(Im(C)+ξ Tm(C))

N
+wVm(C)−µSm(C)

}
dC,

(18)

V (t) =V0 +
2(1−α)

(2−α)M(α)

{
φΛ− (µ +w)Vm−

β (−π +1)Vm(ξ Tm + Im)

N

}
+

2α

(2−α)M(α)

∫ t

0

{
φΛ− (µ +w)Vm(C)−

β (−π +1)Vm(C)(ξ Tm(C)+ Im(C))
N

}
dC,

(19)

E(t) = E0 +
2(1−α)

(2−α)M(α)

{(−π +1)Vmβ (ξ Tm + Im)

N
+

βSm(Im +ξ Tm)

N
−Em(σ +µ)+(−p+1)θTm

+
εβ (Im +ξ Tm)Rm

N

}
+

2α

(2−α)M(α)

∫ t

0

{(−π +1)Vm(C)β (ξ Tm(C)+ Im(C))
N

+
βSm(C)(Im(C)+ξ Tm(C))

N
−Em(C)(σ +µ)+(−p+1)θTm(C)+

εβ (Im(C)+ξ Tm(C))Rm

N

}
dC,

(20)

I(t) = I0 +
2(1−α)

(2−α)M(α)
{σEm− (γ +η +µ +δ1) Im + pθTm}

+
2α

(2−α)M(α)

∫ t

0
{σEm(C)− (γ +η +µ +δ1) Im(C)+ pθTm(C)}dC,

(21)

T (t) = T0 +
2(1−α)

(2−α)M(α)
{ηIm− (µ +θ +δ2 + τ)Tm}

+
2α

(2−α)M(α)

∫ t

0
{ηIm(C)− (µ +θ +δ2 + τ)Tm(C)}dC,

(22)

R(t) = R0 +
2(1−α)

(2−α)M(α)

{
γIm−

εβRm(ξ Tm + Im)

N
+Tmτ−µRm

}
+

2α

(2−α)M(α)

∫ t

0

{
γIm(C)−

εβRm(C)(ξ Tm(C)+ Im(C))
N

+Tm(C)τ−µRm(C)
}

dC.
(23)

We now assume that anytime n goes to infinity, the exact solutions of the fractional system (11) can
be obtained by taking the limit from both sides of (18)-(23). Put differently, the following is how the
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solutions are obtained 

limm→∞ Sm = S(t),
limm→∞Vm =V (t),
limm→∞ Em = E(t),
limm→∞ Im = I(t),
limm→∞ Tm = T (t),
limm→∞ Rm = R(t).

(24)

We may now apply the Picard-Lindelof method to determine an existence criteria and the uniqueness
of the solutions. In order to accomplish this, define the subsequent operators

M1(t,S(t)) = (1−φ)Λ− βS(I+ξ T )
N +wV −µS,

M2(t,V (t)) = φΛ− (µ +w)V − β (−π+1)V (ξ T+I)
N ,

M3(t,E(t)) =
(−π+1)V β (ξ T+I)

N + βS(I+ξ T )
N −E(σ +µ)+(−p+1)θT + εβ (I+ξ T )R

N ,
M4(t,S(t)) = σE− (γ +η +µ +δ1) I + pθT,
M5(t,T (t)) = ηI− (µ +θ +δ2 + τ)T,
M6(t,R(t)) = γI− εβR(ξ T+I)

N +T τ−µR.

(25)

Where, for the first, second, third, forth, fifth and sixth functions respectively, M1(t,S(t)), M2(t,V (t)),
M3(t,E(t)), M4(t, I(t)), M5(t,T (t)) and M6(t,R(t)) are regarded as contractions with respect to S(t),
V (t), E(t), I(t), T (t) and R(t). We also take into consideration the following product spaces

Nl,q1(t,S(t)) = [t− l, t + l]× [S−q1,S+q1] = L×Q1,
Nl,q2(t,V (t)) = [t− l, t + l]× [V −q1,V +q1] = L×Q2,
Nl,q3(t,E(t)) = [t− l, t + l]× [E−q1,E +q1] = L×Q3,
Nl,q4(t, I(t)) = [t− l, t + l]× [I−q1, I +q1] = L×Q4,
Nl,q5(t,T (t)) = [t− l, t + l]× [T −q1,T +q1] = L×Q5,
Nl,q6(t,R(t)) = [t− l, t + l]× [R−q1,R+q1] = L×Q6.

(26)

Consider the following

M∗1 = sup
(t,S)∈Nl,q1

‖M1(t,S(t))‖, M∗2 = sup
(t,V )∈Nl,q2

‖M2(t,V (t))‖, M∗3 = sup
(t,E)∈Nl,q3

‖M3(t,E(t))‖,

M∗4 = sup
(t,I)∈Nl,q4

‖M4(t, I(t))‖, M∗5 = sup
(t,T )∈Nl,q5

‖M5(t,T (t))‖, M∗6 = sup
(t,R)∈Nl,q6

‖M6(t,R(t))‖.

The Picard operator is defined at the current position

ℵ : C(L,Q1,Q2,Q3,Q4,Q5,Q6)→C(L,Q1,Q2,Q3,Q4,Q5,Q6),

via means of

ℵ(F̂(t)) = F̂0(t)+
2(1−α)

(2−α)M(α)
H (t, F̂(t))+

2α

(2−α)M(α̂)

∫ t

0
H (C, F̂(C))dC, (27)

provided that F̂(t) = {S(t),V (t),E(t), I(t),T (t),R(t)} and F̂0(t) = {S0,V0,E0, I0,T0,R0} and

H (t, F̂(t)) = {M1(t,S(t)),M2(t,V (t)),M3(t,E(t)),M4(t, I(t)),M5(t,T (t)),M6(t,R(t))}. (28)

We define a uniform norm as follows on the space C(L,Q1,Q2,Q3,Q4,Q5,Q6) in order to use the
Picard theorem. A ‖F̂(t)‖∞ = supt∈[t−l,t+l] |F̂(t)|. Let’s assume for the purposes of this that all solution
functions are constrained over a certain time span.

‖F̂(t)‖∞ ≤max{q1,q2,q3,q4,q5,q6}= q. (29)
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In addition, suppose that M∗ = max{M∗1 ,M∗2 ,M∗3 ,M∗4 ,M∗5 ,M∗6} and that t0 is a constant, where t ≤ t0.
Next, we have

‖ℵ(F̂(t))− F̂0(t)‖,

= ‖ 2(1−α)

(2−α)M(α)
H (t, F̂(t))+

2α

(2−α)M(α)

∫ t

0
H (C, F̂(C))dC‖,

≤ 2(1−α)

(2−α)M(α)
‖H (t, F̂(t))‖+ 2α

(2−α)M(α)

∫ t

0
‖H (C, F̂(C))‖dC,

≤
{

2(1−α)

(2−α)M(α)
+

2αt0
(2−α)M(α)

}
M∗,

≤ ǓM∗,

≤ q,

where Ǔ = 2(1−α)
(2−α)M(α)+

2αt0
(2−α)M(α) and Ǔ < q

M∗ are assumed. Lastly, our goal is to establish the contrac-
tion nature of the Picard operator ℵ. Since the functions M1, M2, M3, M4, M5 and M6 are contractions,
we can write for each F̂1(t), F̂2(t) ∈C(L,Q1,Q2,Q3,Q4,Q5,Q6) in order to accomplish this purpose.

‖H (t, F̂1(t))−H (t, F̂2(t))‖ ≤ Y ∗‖F̂1(t)− F̂2(t)‖, (30)

where the contraction constant is Y ∗ < 1. Right now, utilizing the definition of the Picard operator ℵ

found in (27), by inequality (30), and by the equality

‖ℵ(F̂1(t))−ℵ(F̂2(t))‖= sup
t∈[t−l,t+l]

|F̂1(t)− F̂2(t)|,

‖ℵ(F̂1(t))−ℵ(F̂2(t))‖=
∥∥∥ 2(1−α)

(2−α)M(α)

[
H (t, F̂1(t))−H (t, F̂2(t))

]
+

2α

(2−α)M(α)

∫ t

0

[
H (C, F̂1(C))−H (C, F̂2(C))

]
dC
∥∥∥,

≤ 2(1−α)

(2−α)M(α)

∥∥H (t, F̂1(t))−H (t, F̂2(t))
∥∥

+
2α

(2−α)M(α)

∫ t

0

∥∥H (C, F̂1(C))−H (C, F̂2(C))
∥∥dC,

≤ 2(1−α)Y ∗

(2−α)M(α)

∥∥F̂1(t)− F̂2(t)
∥∥+ 2αY ∗

(2−α)M(α)

∫ t

0

∥∥F̂1(C)− F̂2(C)
∥∥dC,

≤
[

2(1−α)

(2−α)M(α)
+

2α

(2−α)M(α)

]
Y ∗
∥∥F̂1(t)− F̂2(t)

∥∥ ,
≤ ǓY ∗

∥∥F̂1(t)− F̂2(t)
∥∥ ,

As a result, we get
‖ℵ(F̂1(t))−ℵ(F̂2(t))‖ ≤ ǓY ∗

∥∥F̂1(t)− F̂2(t)
∥∥ .

This shows that since Y ∗ < 1, the operator ℵ is a contraction with constant ǓY ∗ < 1. Therefore, the
Chlamydia infectious model’s fractional system (17) appears to have a unique solution, according to
the Banach fixed point theorem.
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3.2. Positivity and Restriction of Solutions
Given that the proposed model’s responses are bounded and guaranteed to be positive, the study

looks at the conditions under which it can be applied to significant value real world scenarios. Regard-
ing classical derivatives, we possess the subsequent information ∀t ≥ 0.

S(t)≥ S0e−(β |I|∞+ξ |T |∞+µ)t ,

V (t)≥V0e−(µ+
(1−π)(ξ T+I)β

N )+ω ,

E(t)≥ E0e−(σ+µ),

I(t)≥ I0e−(γ+η+µ+δ1),

T (t)≥ T0e−(µ+θ+δ2+τ),

R(t)≥ R0e−(µ+
εβ (ξ T+I)

N ).

(31)

We must determine the norm
‖W‖∞ = sup

t∈DW

|W(t)|. (32)

We discover
CFDα

t S(t) = Λ(−φ +1)− Sβ (I +T ξ )

N
+ωV −µS, (33)

≥−S(
(β (I +T ξ )

N
+µ),

≥−S(
β (|I|+ |T |ξ )

N
+µ),

≥−(µ +β (sup
t∈DI

|I|+ξ sup
t∈T
|T |))S,

≥−(µ +β |I|∞ + |T |∞ξ )S.

For the classical derivative, the outcome is ∀t ≥ 0.

S(t)≥ S0e−(β |I|∞+ξ |T |∞+µ)t . (34)

While the next section discusses positive options with non-local operators, states that the system (1)’s
solutions will undoubtedly remain positive when all of the beginning criteria for nonlocal operator are
satisfied. For ∀t > 0, we build a fractal-fractional operator with a Mittag Leffler kernel.

S(t)≥ S(0)Eα

[
− υ1−β α(|I|∞β+|T |∞ξ+µ)tα

ÃB(α)−(1−α)(|I|∞β+|T |∞ξ+µ)

]
,

V (t)≥V (0)Eα

[
− υ1−β α(µ+ω+

β (1−π)(ξ |T |∞+|I|∞)
N )tα

ÃB(α)−(1−α)(ω+µ+
(−π+1)β (|T |∞ξ+|I|∞)

N )

]
,

E(t)≥ E(0)Eα

[
− υ1−β α(σ+µ)tα

ÃB(α)−(1−α)(σ+µ)

]
,

I(t)≥ I(0)Eα

[
− υ1−β α(γ+η+µ+δ1)tα

ÃB(α)−(1−α)(γ+η+µ+δ1)

]
,

T (t)≥ T (0)Eα

[
− υ1−β α(µ+θ+δ2+τ)tα

ÃB(α)−(1−α)(µ+θ+δ2+τ)

]
,

R(t)≥ R(0)Eα

[
− υ1−β α(µ+

εβ (ξ |T |∞+|I|in f ty)
N )tα

ÃB(α)−(1−α)(µ+
εβ (ξ |T |∞+|I|∞)

N )

]
.

(35)

where the time component is υ .

Lemma 3.1. The region ϒl ∈ R6
+

ϒl = {(V (t),E(t),S(t), I(t),R(t),T (t)) ∈ R6
+} (36)

attracts all of system (1)’s solutions and, for the suggested system in R6
+, is positively invariant when

utilized with initial constraints that are not negative.
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Proof. We will illustrate the framework (1) advantageous outcome, and the results are:

CFDα,β
0,t S(t)

∣∣∣
S=0

= (1−φ)Λ+wV ≥ 0,
CFDα,β

0,t V (t)
∣∣∣
V=0

= φΛ≥ 0,
CFDα,β

0,t E(t)
∣∣∣
E=0

= (−π+1)V β (ξ T+I)
N + βS(I+ξ T )

N +(−p+1)θT + εβ (I+ξ T )R
N ≥ 0,

CFDα,β
0,t I(t)

∣∣∣
I=0

= σE + pθT ≥ 0,
CFDα,β

0,t T (t)
∣∣∣
T=0

= ηI ≥ 0,
CFDα,β

0,t R(t)
∣∣∣
R=0

= γI +T τ ≥ 0.

(37)

In accordance with system (37), the vector field is situated in the area R6
+ around every hyperplane

encircling the non-negative orthant about t > 0. Therefore,

ϒl = {(S(t),V (t), I(t),T (t),E(t),R(t)) ∈ R6
+}, (38)

is a positively invariant domain.

3.3. Equilibrium points analysis
This section offers a thorough examination of equilibrium points. First, we solve the framework 1

for equilibrium points. The areas devoid of illness are

E1 (S∗,V ∗,T ∗, I∗,R∗,E∗) =
(
(µ +w)(1−φ)Λ+φΛw

(w+µ)µ
,

Λφ

µ +w
,0,0,0,0

)
.

The EEPs (Endemic Equilibrium Points) at this time are

E1 (S∗,V ∗,E∗, I∗,T ∗,R∗) .

where

S∗∗(t) =
(−φ +1)Λ+ωV ∗∗

(λ ∗∗+µ)
,

V ∗∗(t) =
φΛ

((1−π)λ ∗∗+µ +ω)
,

T ∗∗(t) =
ηI∗∗

K3
,

E∗∗(t) =
[S∗∗+(−π +1)V ∗∗]λ ∗∗+(−p+1)ϕT ∗∗+ ελ ∗∗R∗∗

K1
,

λ
∗∗ =

β (I∗∗+T ∗∗ξ )
N∗∗

,

I∗∗(t) =
K3σλ ∗∗ (µ + ελ ∗∗) [S∗∗+(1−π)V ∗∗]

K4
,

R∗∗(t) =
(K3γ +ητ) I∗∗

K3 (µ + ελ ∗∗)
.

where, P1 = σ +µ,P2 = η +µ +δ1 + γ,P3 = ϕ +µ + τ +δ2.

P4 =
[
µ

2 (γ +µ +δ1)(δ2 +µ + τ)+σ µ (γ +µ +δ1)(ϕ +µ + τ +δ2)+µση (µ +δ2 + τ)

+ ελ
∗∗

µ (γ +µ +δ1)(δ2 +µ + τ)+ ελ
∗∗

σ (µ +δ1)(µ +ϕ +δ2 + τ)+ ελ
∗∗

ση (µ +δ2)

+ελ
∗∗

µηϕ(1− p)+µ
2
ϕη(1− p)

]
.
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3.4. Reproduction Number
Taking the maximum eigen value of the spectral radius FV−1 yields the basic reproduction number

R0.

Ro =
σ (ηξ βA+βAG4)

[G4µ (γ +µ +δ1)+(δ2 +µ + τ)(ση +ηµ)+ηµϕ(−p+1)]N
, (39)

where, A = (S∗+(−π +1)V ∗) ,J1 = ω + µ,J2 = σ + µ,J3 = η + µ + δ1 + γ,J4 = ϕ + µ + τ + δ2,
N = S∗+T ∗+E∗+ I∗+V ∗+R∗.

4. Stability Analysis of the Proposed Model

Using the Sumudu transform, we offer an iterative technique for analyzing the stability of the
fractional hearing loss CF framework (11). To achieve this goal, we receive

ST
{CFDα

0 S(t)
}
(s) = ST

{
(1−φ)Λ− βS(I+ξ T )

N +wV −µS
}
(s),

ST
{CFDα

0 V (t)
}
(s) = ST

{
φΛ− (µ +w)V − β (−π+1)V (ξ T+I)

N

}
(s),

ST
{CFDα

0 E(t)
}
(s) = ST

{
(−π+1)V β (ξ T+I)

N + βS(I+ξ T )
N

−E(σ +µ)+(−p+1)θT + εβ (I+ξ T )R
N

}
(s),

ST
{CFDα

0 I(t)
}
(s) = ST{σE− (γ +η +µ +δ1) I + pθT}(s),

ST
{CFDα

0 T (t)
}
(s) = ST{ηI− (µ +θ +δ2 + τ)T}(s),

ST
{CFDα

0 R(t)
}
(s) = ST

{
γI− εβR(ξ T+I)

N +T τ−µR
}
(s).

(40)

Considering the specification of the Sumudu transform for the fractional CF-derivative with appropriate
attention, we obtain

M(α
1−α+αs {ST[S(t)](s)−S(0)}= ST

{
(1−φ)Λ− βS(I+ξ T )

N +wV −µS
}
(s),

M(α
1−α+αs {ST[V (t)](s)−V (0)}= ST

{
φΛ− (µ +w)V − β (−π+1)V (ξ T+I)

N

}
(s),

M(α)
1−α+αs {ST[E(t)](s)−E(0)}= ST

{
(−π+1)V β (ξ T+I)

N + βS(I+ξ T )
N

−E(σ +µ)+(−p+1)θT + εβ (I+ξ T )R
N

}
(s),

M(α)
1−α+αs {ST[I(t)](s)− I(0)}= ST{σE− (γ +η +µ +δ1) I + pθT}(s),

M(α)
1−α+αs {ST[T (t)](s)−T (0)}= ST{ηI− (µ +θ +δ2 + τ)T}(s),

M(α)
1−α+αs {ST[R(t)](s)−R(0)}= ST

{
γI− εβR(ξ T+I)

N +T τ−µR
}
(s).

(41)

The following equalities can be obtained by rewriting the formulas

ST[S(t)](s) = S(0)+ 1−α+αs
M(α) ST

{
(1−φ)Λ− βS(I+ξ T )

N +wV −µS
}
(s),

ST[V (t)](s) =V (0)+ 1−α+αs
M(α) ST

{
φΛ− (µ +w)V − β (−π+1)V (ξ T+I)

N

}
(s),

ST[E(t)](s) = E(0)+ 1−α+αs
M(α) ST

{
(−π+1)V β (ξ T+I)

N + βS(I+ξ T )
N

−E(σ +µ)+(−p+1)θT + εβ (I+ξ T )R
N

}
(s),

ST[I(t)](s) = I(0)+ 1−α+αs
M(α) ST{σE− (γ +η +µ +δ1) I + pθT}(s),

ST[T (t)](s) = T (0)+ 1−α+αs
M(α) ST{ηI− (µ +θ +δ2 + τ)T}(s),

ST[R(t)](s) = R(0)+ 1−α+αs
M(α) ST

{
γI− εβR(ξ T+I)

N +T τ−µR
}
(s).

(42)
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Following the inverse Sumudu transform on both sides of the system (43), the fractional CF-model
(11) recursive equations are now produced

Sm+1(t) = Sm(0)+ST−1
[

1−α+αs
M(α) ST

{
(1−φ)Λ− βSm(Im+ξ Tm)

N +wV −µSm

}
(s)
]
,

Vm+1(t) =Vm(0)+ST−1
[

1−α+αs
M(α) ST

{
φΛ− (µ +w)Vm− β (−π+1)Vm(ξ Tm+Im)

N

}
(s)
]
,

Em+1(t) = Em(0)+ST−1
[

1−α+αs
M(α) ST

{
(−π+1)Vmβ (ξ Tm+Im)

N + βSm(Im+ξ Tm)
N

−Em(σ +µ)+(−p+1)θTm + εβ (Im+ξ Tm)Rm
N

}
(s)
]
,

Im+1(t) = Im(0)+ST−1
[

1−α+αs
M(α) ST{σEm− (γ +η +µ +δ1) Im + pθTm}(s)

]
,

Tm+1(t) = Tm(0)+ST−1
[

1−α+αs
M(α) ST{ηIm− (µ +θ +δ2 + τ)Tm}(s)

]
,

Rm+1(t) = Rm(0)+ST−1
[

1−α+αs
M(α) ST

{
γIm− εβRm(ξ Tm+Im)

N +Tmτ−µRm

}
(s)
]
.

(43)

Conversely, the aforementioned CF-system’s approximations are produced by

S(t) = lim
m→∞

Sm(t), V (t) = lim
m→∞

Vm(t), E(t) = lim
m→∞

Em(t),

I(t) = lim
m→∞

Im(t), T (t) = lim
m→∞

Tm(t), R(t) = lim
m→∞

Rm(t).

Now, taking into account the aforementioned concepts and relationships, we can verify the stability of
the fractional CF-system.

Theorem 4.1. Assume that ϒ has the following definition for a self-map

ϒ(Sm(t)) = Sm+1(t) = Sm(t)+ST−1
[

1−α+αs
M(α) ST

{
(1−φ)Λ− βSm(Im+ξ Tm)

N +wV −µSm

}
(s)
]
,

ϒ(Vm(t)) =Vm+1(t) =Vm(t)+ST−1
[

1−α+αs
M(α) ST

{
φΛ− (µ +w)Vm− β (−π+1)Vm(ξ Tm+Im)

N

}
(s)
]
,

ϒ(Em(t)) = Em+1(t) = Em(t)+ST−1
[

1−α+αs
M(α) ST

{
(−π+1)Vmβ (ξ Tm+Im)

N + βSm(Im+ξ Tm)
N

−Em(σ +µ)+(−p+1)θTm + εβ (Im+ξ Tm)Rm
N

}
(s)
]
,

ϒ(Im(t)) = Im+1(t) = Im(t)+ST−1
[

1−α+αs
M(α) ST{σEm− (γ +η +µ +δ1) Im + pθTm}(s)

]
,

ϒ(Tm(t)) = Tm+1(t) = Tm(t)+ST−1
[

1−α+αs
M(α) ST{ηIm− (µ +θ +δ2 + τ)Tm}(s)

]
,

ϒ(Rm(t)) = Rm+1(t) = Rm(t)+ST−1
[

1−α+αs
M(α) ST

{
γIm− εβRm(ξ Tm+Im)

N +Tmτ−µRm

}
(s)
]
.

(44)
Then, whenever we have, the iterative fractional CF-system (43) is ϒ stable in L1(a,b).

1+wΨ1 +µΨ2 +β
Θ∗1Ψ3+Θ∗2Ψ4+ξ{Θ∗3Ψ5+Θ∗2Ψ6}

N ,

1+(µ +w)Ψ7 +β (−π +1)
Θ∗1Ψ8+Θ∗2Ψ9+ξ{Θ∗3Ψ10+Θ∗2Ψ11}

N ,

1+β (−π +1)
Θ∗1Ψ12+Θ∗2Ψ13+ξ{Θ∗3Ψ14+Θ∗2Ψ15}

N

+β
Θ∗1Ψ16+Θ∗2Ψ17+ξ{Θ∗3Ψ18+Θ∗2Ψ19}

N +(σ +µ)Ψ20 +(−p+1)θΨ21

+βε
Θ∗1Ψ22+Θ∗12Ψ23+ξ{Θ∗3Ψ24+Θ∗12Ψ25}

N ,
1+σΨ26 +(γ +η +µ +δ1)Ψ27 + pθΨ28,
1+ηΨ29 +(µ +θ + τ +δ2)Ψ30,

1+ γΨ31 + τΨ32 +µΨ33 +βε
Θ∗1Ψ34+Θ∗12Ψ35+ξ{Θ∗3Ψ36+Θ∗12Ψ37}

N .

(45)

where functions Ψi for i = 1,2, · · · ,8 are added in the sequel.

Proof. Our goal in starting the proof is to demonstrate that operator ϒ has a fixed point. Each time
u,v ∈ N, we could write

‖ϒ(Su(t))−ϒ(Sv(t))‖= ‖Su(t)−Sv(t)‖,
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=
∥∥∥Su(t)+ST−1

[
1−α +αs

M(α)
ST
{
(1−φ)Λ− βSu(Iu +ξ Tu)

N
+wVu−µSu

}
(s)
]

−Sv(t)−ST−1
[

1−α +αs
M(α)

ST
{
(1−φ)Λ− βSv(Iv +ξ Tv)

N
+wVv−µSv

}
(s)
]∥∥∥,

≤
∥∥∥Su(t)−Sv(t)

∥∥∥+∥∥∥ST−1
[1−α +αs

M(α)
ST
{
−β

Su(Iu +ξ Tu)−Sv(Iv +ξ Tv)

N

+w(Vu−Vv)−µ(Su−Sv)
}
(s)
]∥∥∥,

≤
∥∥∥Su(t)−Sv(t)

∥∥∥+∥∥∥ST−1
[1−α +αs

M(α)
ST
{
−β

SuIu +ξ SuTu−SvIv−ξ SvTv)

N

+w(Vu−Vv)−µ(Su−Sv)
}
(s)
]∥∥∥,

≤
∥∥∥Su(t)−Sv(t)

∥∥∥+∥∥∥ST−1
[1−α +αs

M(α)
ST
{

w(Vu−Vv)−µ(Su−Sv)

−β
Iu(Su−Sv)+Sv(Iu− Iv)+ξ {Tu(Su−Sv)+Sv(Tu−Tv)}

N

}
(s)
]∥∥∥. (46)

Due to the fact that all four solutions play the same role, we will think about

‖Su−Sv‖ ' ‖Iu− Iv‖ ' ‖Vu−Vv‖ ' ‖Tu−Tv‖. (47)

Next, we have (46) and (47)

≤
∥∥∥Su(t)−Sv(t)

∥∥∥+∥∥∥ST−1
[1−α +αs

M(α)
ST
{

w(Su−Sv)−µ(Su−Sv)

−β
Iu(Su−Sv)+Sv(Su−Sv)+ξ {Tu(Su−Sv)+Sv(Su−Sv)}

N

}
(s)
]∥∥∥,

Iu, Sv and Tu are bounded sequences since they are convergent. Thus, for every t and every u,v ∈ N,
we get constants Θ∗1, Θ∗2 and Θ∗3. Then

‖Iu‖ ≤Θ
∗
1, ‖Sv‖ ≤Θ

∗
2, ‖Tu‖ ≤Θ

∗
3, ‖Tv‖ ≤Θ

∗
4, ‖Su‖ ≤Θ

∗
5, ‖Iv‖ ≤Θ

∗
6,

‖Eu‖ ≤Θ
∗
7, ‖Ev‖ ≤Θ

∗
8, ‖Vu‖ ≤Θ

∗
9, ‖Vv‖ ≤Θ

∗
10, ‖Ru‖ ≤Θ

∗
11, ‖Rv‖ ≤Θ

∗
12.

As a result, we acquire

≤
∥∥∥Su(t)−Sv(t)

∥∥∥+ST−1
[1−α +αs

M(α)
ST
{

w‖(Su−Sv)‖+µ‖(Su−Sv)‖

+β
Θ∗1‖(Su−Sv)‖+Θ∗2‖(Su−Sv)‖+ξ

{
Θ∗3‖(Su−Sv)‖+Θ∗2‖(Su−Sv)‖

}
N

}
(s)
]
,

‖ϒ(Su(t))−ϒ(Sv(t))‖ ≤

{
1+wΨ1 +µΨ2 +β

Θ∗1Ψ3 +Θ∗2Ψ4 +ξ
{

Θ∗3Ψ5 +Θ∗2Ψ6
}

N

}
‖(Su−Sv)‖,

where Ψ j, for j = 1,2,3, · · · ,6 are functions coming from ST−1
[

1−α+αs
M(α) ST[.]

]
. The similar way, we

obtain

‖ϒ(Vu(t))−ϒ(Vv(t))‖≤

{
1+(µ +w)Ψ7 +β (−π +1)

Θ∗1Ψ8 +Θ∗2Ψ9 +ξ
{

Θ∗3Ψ10 +Θ∗2Ψ11
}

N

}
‖(Vu−Vv)‖,
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‖ϒ(Eu(t))−ϒ(Ev(t))‖ ≤
{

1+β (−π +1)
Θ∗1Ψ12 +Θ∗2Ψ13 +ξ

{
Θ∗3Ψ14 +Θ∗2Ψ15

}
N

+β
Θ∗1Ψ16 +Θ∗2Ψ17 +ξ

{
Θ∗3Ψ18 +Θ∗2Ψ19

}
N

+(σ +µ)Ψ20 +(−p+1)θΨ21

+βε
Θ∗1Ψ22 +Θ∗12Ψ23 +ξ

{
Θ∗3Ψ24 +Θ∗12Ψ25

}
N

}
‖(Eu−Ev)‖,

‖ϒ(Iu(t))−ϒ(Iv(t))‖ ≤ {1+σΨ26 +(γ +η +µ +δ1)Ψ27 + pθΨ28}‖(Iu− Iv)‖,

‖ϒ(Tu(t))−ϒ(Tv(t))‖ ≤ {1+ηΨ29 +(µ +θ + τ +δ2)Ψ30}‖(Tu−Tv)‖,

and

‖ϒ(Ru(t))−ϒ(Rv(t))‖ ≤
{

1+ γΨ31 + τΨ32 +µΨ33

+βε
Θ∗1Ψ34 +Θ∗12Ψ35 +ξ

{
Θ∗3Ψ36 +Θ∗12Ψ37

}
N

}
‖(Ru−Rv)‖.

The self-map ϒ has a fixed point because it is contraction, according to the assumptions (45). We
assert that ϒ satisfies every assumption of theorem. This claim can be easily proven by assuming that
Θ = (0,0,0,0,0,0) additionally

Θ =



1+wΨ1 +µΨ2 +β
Θ∗1Ψ3+Θ∗2Ψ4+ξ{Θ∗3Ψ5+Θ∗2Ψ6}

N ,

1+(µ +w)Ψ7 +β (−π +1)
Θ∗1Ψ8+Θ∗2Ψ9+ξ{Θ∗3Ψ10+Θ∗2Ψ11}

N ,

1+β (−π +1)
Θ∗1Ψ12+Θ∗2Ψ13+ξ{Θ∗3Ψ14+Θ∗2Ψ15}

N

+β
Θ∗1Ψ16+Θ∗2Ψ17+ξ{Θ∗3Ψ18+Θ∗2Ψ19}

N +(σ +µ)Ψ20 +(−p+1)θΨ21

+βε
Θ∗1Ψ22+Θ∗12Ψ23+ξ{Θ∗3Ψ24+Θ∗12Ψ25}

N ,
1+σΨ26 +(γ +η +µ +δ1)Ψ27 + pθΨ28,
1+ηΨ29 +(µ +θ + τ +δ2)Ψ30,

1+ γΨ31 + τΨ32 +µΨ33 +βε
Θ∗1Ψ34+Θ∗12Ψ35+ξ{Θ∗3Ψ36+Θ∗12Ψ37}

N .

After that, theorem presumptions are all met, making ϒ Picard ϒ stable, and the proof is ultimately
finished.

5. Numerical Scheme with generalized form of fractal-fractional Operator

Now, to derive the numerical solution of the given Caputo-Fabrizio type model (1), we use the
Newton polynomial method. Using the related polynomial equations of the proposed model classes,
α̂ ∈ [0,1], 0 ≤ t ≤ T , step size h = T/N, and tn = nh, for n = 0,1,2, ...,N ∈ Z+, the solution of the
model (1) is written as follows

Y n+1 = Y n +
1−α

M(α)

[
t1−α
n g(tn,y(tn))− t1−α

n−1 g(tn−1,y(tn−1))
]

+
α

M(α)

[
23
12

t1−α
n g(tn,y(tn))∆t− 4

3
t1−α

n−1 g(tn−1,y(tn−1))∆t +
5

12
t1−α

n−2 g(tn−2,y(tn−2))∆t
]
.

(48)

6. Result and Discussion

A numerical simulation was conducted to analyze the control of newly designed complicated frac-
tional chaotic sexually transmitted disease chlamydia in United states using the fractal fractional ap-
proach. S(0) = 233824096, T (0) = 250000, E(0) = 500000, V (0) = 1000000, I(0) = 200904 and
R(0)= 50000 are the initial conditions of the proposed system. The variables S(t),T (t), I(t),V (t),E(t),
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and R(t), respectively, indicate susceptible individuals, treated human, infectious peoples, vaccinated
group, exposed population and humans with recovery. Using the proposed system’s fractal fractional
derivative, we can easily see that, according to data from different nations, more accurate estimate of
the minimum illness rate values from [35] is given by vulnerable persons, vaccinated susceptible indi-
viduals, exposed peoples, infectious peoples, treated humans, and humans with recovery rate. Figures
(1-6) illustrate this impact at various fractal and fractional order values at different dimension. Using
the CF fractional derivatives, figures 1 simulates S(t) shows a noticeable decrease in the susceptible
population under the influence of control measures, figures 2 simulates V (t) shows a noticeable de-
crease in the vaccinated susceptible population under the effectiveness of the implemented control is
evident, figures 3 shows a noticeable decrease in the exposed peoples increase by fractional orders
under the influence of control measures, figures 4 simulates I(t) shows a noticeable increase in the
infected population under the effectiveness of the implemented control is evident, figures 5 simulates
T (t) shows a noticeable decrease in the treated humans population under the effectiveness of the im-
plemented control is evident and figures 6 simulates T (t) shows a noticeable increase in the recovered
humans population under the effectiveness of the implemented control is evident at different fractional
orders with different dimension. This study sheds light on how disease control is expected to de-
velop in the future and how we may improve our efforts to reduce the spread of infectious disease in
society. Compared to classical derivatives, fractal fractional analysis produces robust results for all
compartments when examining steady states with non-integer order derivatives. It’s also important to
remember that fractional value reduction improves the accuracy and reliability of solutions for every
compartment. Memory influence can be observed with a greater degree of freedom and a solution
restricted to a steady state point that lies in a feasible range by varying the fractal dimension. The frac-
tional order results are more dependable than the integer order ones due to the fractional order models’
ability to capture memory effects in a system, despite the fact that both models’ predictive strengths
are rather equal.
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Figure 1: S(t) simulation using parametric values of dimension 1.
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Figure 2: V (t) simulation using parametric values of dimension 1.
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Figure 3: E(t) simulation using parametric values of dimension 1.
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Figure 4: I(t) simulation using parametric values of dimension 1.
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Figure 5: T (t) simulation using parametric values of dimension 1.
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Figure 6: R(t) simulation using parametric values of dimension 1.

7. Conclusions

This research investigates the transmission of Chlamydia in the United States with varying rates
using a dynamic, chaotic fractional order model with a fractal fractional derivative. Non-singular and
nonlocal kernel, which emerge in the derivation of the generalized fractal operator, provide the founda-
tion of this fractional model. The uniqueness and positivity of the solutions that fall within the feasible
zone were satisfied by the model. Stable and Chlamydia system behavior in conceivable locations are
the results of the chaos control requirements being satisfied. The Chlamydia model is examined theo-
retically and numerically using a fractal fractional operator understanding of the CF function at various
fractal and fractional order values. The results are also compared using exponential decay kernel at
various fractional order values, with the proportion of minimum interest rates in various countries used
as a proxy. The fractional-order Chlamydia model, which has been adjusted with a fractal fractional
derivative, is used to regulate the essential lowest infectious rate of the disease, indicating strong con-
sensus on the system’s Chlamydia disease management. Based on numerical data, the model gives
an effect analysis of the essential minimum infectious rate. The graph depicts the influence of vari-
ables on the quantity of the critical minimum infectious rate over time. This research approach has
significant results for disease coefficients, rate of infection, and demand for recovery. As vaccination
demand and infection exponents begin to drop, infectious rates begin to rise in accordance with the
initial conditions, exposing the Chlamydia system’s true macroeconomic behavior. It is highlighted
here that, for non-integer time-fractional parameters, when compared to time-integer parameters, the
intricate chaotic fractional structure yields more reliable and suitable results.
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