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Abstract:  

Deep Neural Networks (DNNs) have become one of the most significant tools utilized in 

analyzing complicated systems, surpassing the ability to comprehend complexities. The study 

provides the advantage of DNNs' interest to improve the analysis of intricate patterns and 

produce insightful findings. It is crucial to comprehend the dynamics of infectious disease spread 

in ecological systems, especially when it comes from predator to prey, because of its significance 

for a variety of real-world situations. In complicated regulation environments, the size range of 

prey and predator populations is influenced by the complicated interactions between infections 

and predator-prey relationships. The analysis of fractional epidemiological models in 

both populations with disease infection (FEM-BPDI) is performed through the novel application 

of artificial intelligence, particularly Deep Neural Networks (DNNs). Datasets for Deep Neural 

Networks are generated using the fde12 solver. Training, testing, and validation phases are 

applied to the DNNs models to acquire solutions for the FEM-BPDI under different 

epidemiological scenarios. Several statistical metrics, such as mean-squared error analyses, auto-

correlation of error (ACE), correlation input and error (CIE), error histogram visualizations, and 

expected regression measurements, are used to show the efficiency that DNNs are at solving the 

FEM-BPDI. The model's stability and resilience in forecasting disease dynamics are highlighted 

by a low Mean Squared Error (MSE) that is obtained. Also, the small or negligible Absolute 

error provides more evidence of the suggested technique's efficacy. This study highlights the 

critical role that AI-powered Deep Neural Networks play in improving the comprehension and 
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forecasting of fractional epidemiological models in the context of dual population dynamics, 

providing invaluable insight into the dynamics of disease transmission and ecosystem control. 

Keywords: Deep Neural Networks (DNNs), Supervised Learning, Fractional Epidemical Model. 

Intelligent computing, bio informatics. Infectious diseases. 

 

1. Introduction 

Artificial intelligence and mathematical computation experienced an enormous transformation in 

the last few years with the introduction of Deep Neural Networks (DNNs). Deep neural networks 

(DNNs), which derive inspiration from the architecture and operations of the human brain, have 

become highly effective computational tools that can extract intricate relationships and patterns 

from enormous quantities of data. Advances in a variety of fields, including finance [1], 

healthcare [2], natural language processing [3], and epidemiology [4], have been driven by their 

capacity to acquire high-level characteristics and perform highly complex computations. DNNs 

play a critical role in AI-based statistical analysis because of their capacity to automatically 

analyze and interpret large amounts of data. This allows researchers to predict outcomes, find 

patterns in the data, and extract useful intelligence. Through the utilization of sophisticated 

computational techniques, DNNs enable forecasters to address challenging problems. By 

applying DNNs to fractional models, new avenues for study and accuracy in forecasting are 

opened, providing a promising path toward the accurate and efficient handling of complex 

phenomena. Scientists can find important variables, unearth subtle dynamics, and produce 

trustworthy forecasts with remarkable accuracy by combining DNNs with fractional models. 

The analysis of fractional epidemiological models, in especially, benefits greatly from the use of 

Deep Neural Networks (DNNs) in the numerical solution of disease transmission models. These 

models are crucial for comprehending disease dynamics in populations where infection crosses 

species boundaries, including variations such as the susceptible-infective-susceptible (SIS) 

model. Researchers can more accurately predict the spread of the disease and the efficacy of 

control measures by using DNNs to analyze and simulate the complex interactions between 

susceptible individuals and infected individuals. Our understanding of disease transmission 

dynamics is greatly enhanced by utilizing the power of Deep Neural Networks (DNNs) in 

numerical solutions and analyses of fractional epidemiological models. This integration makes it 

possible to make more accurate predictions, to identify the key variables that influence the 

spread of diseases, and to develop disease control and prevention strategies that are more 
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successful. By using DNNs, we can find complex patterns in epidemiological data and draw 

conclusions that can guide healthcare practices, interventions, and public health policies all of 

which can help reduce the burden of disease and enhance population health outcomes. The 

literature cited in references [5-10] provides evidence of recent research conducted in the field of 

intelligence computing. 

For a comprehensive understanding of many practical environmental problems, dynamical 

systems that depict the transmission of infection from prey to predator are essential to study. 

Complex regulatory effects on the numbers of both predators and prey are produced in predator-

prey ecosystems by the interaction between infectious diseases and predator-prey dynamics. In a 

fractional-order predator-prey model, susceptible predators can become infected from other 

infected predators as well as from their prey, as this research investigates. More complexity to 

the system is added by the notable non-reproduction of infected prey and predators. Statistical 

scientists and environmentalists have long been fascinated by the intricacies of the prey-predator 

relationship. Outstanding studies have been generated as a consequence, showcasing different 

kinds of relationships via functional responses. Alfred J. Lotka first created [11] and Vito 

Volterra [12] then examined the fundamental framework for modeling the interactions between 

predators and their prey. The foundation for comprehending these dynamic relationships was 

established by their groundbreaking work, which made it possible to create complex models that 

are still evolving and offer new perspectives on environmental systems. A range of ecological 

frameworks are used to thoroughly examine the dynamics of relationships among populations of 

predators and prey. A wide range of elements are included in these models, including 

cannibalistic connections, feedback control processes, migratory behaviors, refuges for prey, 

predator harvesting strategies, stage-structured population dynamics, and diseases that affect 

both prey and predator populations [13–17]. Mathematical biology extensively studies 

epidemiological models that deal with infectious diseases within a single species. Since its 

introduction, the susceptible-infective-recovered (SIR) model by Kermack and MacKendrick 

[18] has generated a great deal of research interest. Scientists have studied the effects of a variety 

of factors on populations in the presence of disease, such as cannibalism, feedback control 

mechanisms, stage-structured populations, supplementary feeding for predators, migration, prey 

refuges, and predator harvesting. These studies have been conducted in along with significant 

research on the classical SIR model. Authors have provided significant findings on prey-predator 

models, in which the disease affects only predator species, in Refs. [19–22]. On the other hand, 

some research focuses exclusively on disease within prey species using epidemiological models 
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[23–25]. According to certain studies, parasites can also change the behavior or outward features 

of their host, rendering it more susceptible to predators [26]. Venturino [27] investigated the 

dynamics between two rival species when one is afflicted with a disease that does not transcend 

species boundaries. A susceptible–infective–susceptible (SIS) prey–predator model with logistic 

growth in the prey species was proposed by Hethcote et al. [28], emphasizing the fact that 

infected prey are more susceptible to predators. Their study revealed a number of fascinating 

inferences, showing that coexistence can be fostered by disease in prey species. Interestingly, 

they provided examples of how the disease's heightened susceptibility among infected prey 

contributes to its eradication from the environment, where it would otherwise persist as an 

endemic.  

Infections that cross species boundaries are also the subject of study [29–33]. In-depth research 

is done on the diseases that spread from animals to people, like Severe Acute Respiratory 

Syndrome (SARS) and avian flu (H5N1), which is caused by a microbe that overcomes the 

species barrier [34, 35]. COVID-19, the coronavirus that is currently circulating, represents a 

situation in which the virus spreads from animal hosts to humans and then from humans to 

humans. This two-way border crossing emphasizes the possible danger that flu viruses present 

and the continued need for research to clarify how some pathogens come to be able to cross 

species boundaries [36]. A model of parasite contamination in which the disease transcended 

species boundaries was studied by K. P. Hadeler [37]. They established a critical limit condition 

because they understood that infections could spread from prey to predators through predation 

and that parasites carried by predators could infect prey. This requirement defined the point at 

which an endemic state could change to a situation that allowed healthy prey and predators to 

coexist. Another fascinating discovery was that predators could persist through parasitization if 

they could not survive only on healthy prey in circumstances where they could not cross a certain 

threshold of transmission. 

The study of fractional calculus has drawn more attention from applied mathematics researchers 

in recent years. This trend has gained traction because fractional calculus can provide a more 

realistic explanation for physical phenomena. Several studies have shown that when modeling 

complex and nonlinear phenomena, integer-order differential operators may not always be the 

best choice. This is due to the fact that classical derivatives frequently miss important physical 

characteristics like heterogeneous behaviors, random walk behavior, anomalous diffusion, and 

non-Markovian processes. The idea of local differential operators has been put forth to overcome 
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these drawbacks and accurately depict these natural processes in conjunction with power-law 

formulations and non-local differential operators. The complexity of the natural world has 

inspired mathematicians and physicists to create complex mathematical operators that accurately 

represent and capture phenomena witnessed in the real world. Given that fractional derivatives 

incorporate memory effects through integration and retain information about past states, their 

inclusion in the context of evolution equations is especially important. Bolton et al. [38] used a 

verified dataset to show how fractional-order models are superior in practice to integer-order 

models. 

In the present work, we postulate a scenario in which predators come into contact with infected 

prey while predating, thus becoming infected. Furthermore, since both infected prey and 

predators are unable to procreate, our model permits the spread of infection from predator to 

predator. We present a fractional-order Holling type-II eco-epidemiological model to study this 

theoretical situation. With the addition of recovery terms and disease transmission between 

predators, our model is more effective at representing the complex dynamics of prey-predator 

interactions in ecosystems. Interestingly, the addition of infection spanning species boundaries in 

both populations adds something new to the body of knowledge on ecological models of disease 

transmission. By using Deep Neural Networks (DNNs) and doing a comparative analysis 

afterwards, we reveal how well our work clarifies these intricate dynamics. We are able to better 

understand these phenomena and offer insightful information for ecological research strategies 

by utilizing the capabilities of DNNs. Our thorough comparative analysis, made feasible by 

DNNs, demonstrates the strength and efficacy of our research in clarifying the complex 

dynamics of ecological systems impacted by the spread of disease. Recent work on intelligent 

computing has been done in the references [39–45].  

The article is divided into two sections: Section 2 explores the basics of fractional derivatives 

and Section 2.1 presents the mathematical model for predator-prey dynamics. For the suggested 

Deep Neural Networks (DNNs) technique, Section 3 describes the methodology used in detail. In 

Section 4, there are discussions about DNN simulations and results from FEM-BPDI. In 

conclusion, Section 5 provides a summary of the findings. 

Nomenclature 

FEM-BPDI The analysis of fractional epidemiological models in both populations 

with disease infection  

DNNs Deep Neural Networks 
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Fde12 fractional differential equation 

ɤ 
Consistent rate of recruiting for the population of susceptible prey 

   The rate at which an illness spreads from infected prey to 

susceptible predator 

   
The rate at which an illness spreads from infected prey to 

susceptible prey 

   
The rate at which an illness spreads from infected predator to 

susceptible predator 

   
The infected predators' natural death rate 

   
The infected prey's natural death rate 

   
Susceptible predators' natural death rate 

   
Rate of natural death for susceptible prey 

   Predation rate of infected preys 

    Predation rate of susceptible prey 

   
The recovery rate of infected prey. 

   
The recovery rate of the infected predator 

  
Rate of half-saturation of susceptible prey 

  
Rate of half-saturation of infected prey 

 

2. Mathematical Modeling  

These symbols, which stand for   (ʈ),   (ʈ) and   (ʈ),    (ʈ), respectively, signify the sizes of the 

populations of susceptible prey population, susceptible predator population, and infected prey 

population infected predator population. The symbol for a time variable is t. The following 

assumptions supported the formulation of the model: 
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i. When a species of prey comes into contact with ill. prey, it becomes infected. 

ii. There are two different ways in which the predator population is infected: 

a) by eating infected prey. 

b) by getting into contact with infected predators. 

iii. Prey that is infected as well as predators recover. 

iv. The Holling type-II functioning response is a characteristic of the predation pattern 

displayed by predators. 

v. There is a direct correlation between the growth rate of predators that prey on susceptible 

prey and their own growth rate. 

vi. Prey that is infected does not reproduce. 

vii. Predators that are infected do not reproduce. 

viii. The probability of obtaining healthy prey is lower than that of infected ones, suggesting 

that        . 

ix. The death rate of healthy prey and predators is lower than that of infected ones. So, 

                 . 

The following is the suggested fractional mathematical model [46] 

{
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The following initial conditions are included in the proposed fractional mathematical model:  

   (  ) > 0, 

   (  ) > 0, 

   (  ) > 0,  

 and   (  )> 0. 

Where     denotes the beginning of time. All the values of the variables ɤ,   ,   ,   ,      ,   , 

,  ,   ,    and    are positive. The following biological interpretations are given in the 

nomenclature. 

3. AI Power Insights Intelligent Computing for Deep Neural Networks 
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Artificial intelligence has undergone a revolution due to deep learning, which has made 

machines capable of extraordinary performance across a range of domains. Deep learning 

models can automatically learn complicated traits and descriptions from raw data by utilizing 

enormous amounts of data and powerful computational resources, doing away with the need for 

human feature development. Deep learning is an area of machine learning that mimics the 

intricate decision-making capabilities of the human brain using multi-layered neural networks, or 

deep neural networks. Deep Neural networks, or DNNs, are fundamentally simple 

computationally units that process inputs and generate outputs. After receiving one or more 

inputs, each neuron adds a weight to the inputs, and then runs the resultant information through 

an activation function.   By including loops in their network architecture, deep neural networks 

(DNNs) improve on the capabilities of conventional neural networks by enabling them to retain a 

memory of prior inputs. Because of this property, DNNs work especially well with sequential 

data, like time series or natural language. However, problems like vanishing and exploding 

gradients can make training DNNs difficult. These issues occur when gradients that are used to 

update weights during backpropagation become unnecessarily large or small, which impairs 

learning.  

We first use the fde12 solver to solve fractional ordinary differential equations (ODEs) 

to develop a dataset for training deep neural networks (DNNs). The complex behaviors governed 

by fractional ODEs are captured in a robust dataset by the fde12 solver, which is especially good 

at handling their complexities. The dataset is split into three parts after it is generated: testing, 

validation, and training sets. This section makes sure the DNNs can validate their learning while 

in training, learn from the training data efficiently, and then be tested on unseen data to see how 

well they perform. When training a DNN, the training data is fed into the network, which 

processes the inputs via several layers of neurons. Every neuron receives inputs that have been 

weighted and summed, and the output is then processed by an activation function. Here, we 

employ the Rectified Linear Unit (ReLU) activation function, which adds non-linearity and 

facilitates the network's ability to process intricate patterns in the data. Convergence is a 

procedure through which the DNN modifies the weights of the connections between neurons 

during training to reduce the error in its predictions.  Figures 4 to 11 show the outcomes of this 

training process and demonstrate how well the DNNs were able to model and predict the 

behavior of the fractional ODEs. These figures show how effective DNNs are as a potent tool for 

identifying and forecasting intricate dynamic systems. Deep neural networks (DNNs) are used in 
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various frameworks to solve fractional ordinary differential equations that are present in 

epidemic models. The following is a summary of the main steps in this process. 

i. Identify the factors and elements that must be determined or handled into consideration 

during the initial stage. 

ii. The next step involves compiling a dataset of input-output pairs, where the inputs are the 

parameters and variables related to the epidemic model. 

iii. With the dataset given, train the deep neural networks (DNNs). Divide the dataset into 

training validation and, testing sets. Use optimization algorithms such as gradient descent 

to iteratively train the DNNs and modify their weights and biases. Reducing the 

difference between expected and actual results is the goal of this procedure. 

iv. Metrics such as R-squared value, mean squared error (MSE), and root mean square error 

can be used to evaluate the DNN model's efficiency. It may be necessary to make 

changes to the structure of the model or training parameters to improve effectiveness. 

v. To make sure the trained DNN model is accurate and reliable, evaluate its generalization 

ability using untested data. Confirm the model's effectiveness in a variety of novel 

scenarios by comparing its predictions to experimental data or well-known solutions.  

vi. Repeat steps 2 through 5 to improve the model repeatedly if new data becomes available 

or if it is not precise. 

Activation functions play a crucial role in introducing nonlinearity in Deep Neural Networks 

(DNNs), which enables models to extract complex patterns from data. Sigmoid, Tanh, and 

Rectified Linear Unit (ReLU) are examples of common activation functions that have unique 

characteristics. Rectified Linear Unit, or ReLU, is one of the most popular activation functions in 

deep learning among them all. By producing zero if the input value is negative and the input 

value if it is positive, it uses a simple nonlinear transformation. The following is the definition of 

the equation for ReLU: 

 ( )      (   ),          (2) 

ReLU's ease of deployment and computational effectiveness make it an attractive option for 

Deep Neural Networks (DNNs), especially when handling large-scale problems. Its capacity to 

sustain gradients over several layers contributes to more efficient training by reducing problems 

such as disappearing gradients that arise with other activation functions. Moreover, ReLU is a 

mainstay of neural network architectures since it speeds up convergence and lessens overfitting. 

DNNs effectively capture complex patterns with little computational overhead by utilizing ReLU 
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activation. This guarantees that the system can identify complex connections in the data, which 

makes for strong predictions and better performance when dealing with difficult tasks. The 

improved performance attained by using ReLU activation in DNNs is shown in Figures 4 to 11. 

Figure 1 presents an overview of the construction of AI-based Intelligent Computing for Deep 

Neural Networks (DNNs). A multiple-layer flow chart illustrating the technique's computational 

processes is shown in Figure 2.  Figure 3 presents comprehensive descriptions outlining the 

proposed approach. The numerical results obtained by using deep neural networks are displayed 

in Table 1. This table presents information about the model's effectiveness and ability to forecast. 

Table I also provides a comprehensive summary of the model's effectiveness across various 

parameters and situations related to the FEM-BPDI model, according to simulations performed 

with Deep Neural Networks (DNNs). 

 

Figure 1: Architecture of AI-based Intelligent Computing for Deep Neural Networks (DNNs). 

 

Table I: Displays the outcomes of Deep Neural Networks (DNNs) simulations for the FEM-

BPDI model. 

Scenarios Cases Performance Gradient MU Time Epoch 

       1 1-4 9.36E-12 2.24E-07 1.00E-08 1000 14 

       2 1-4 2.52E-12 9.87E-08 1.00E-08 445 21 

      3 1-4 1.85E-11 1.59E-06 1.00E-07 1000 49 

      4 1-4 9.57E-12 3.15E-04 1.00E-09 1000 47 
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The results of the Deep Neural Networks (DNNs) simulations for the FEM-BPDI model are 

shown in Table I. It contains findings for four situations, each of which consists of four different 

cases and offers in-depth explanations of the outcomes of each case. The results of using Deep 

Neural Networks (    ) to simulate solving the FEM-BPDI model for Scenarios 1 through 4 

are shown in Tables 1. These metrics offer a thorough assessment of the predicted accuracy and 

resilience of the model. Additionally, the metrics expected values for                  in 

a perfect or well-fitted model should all be zero, signifying that there is no prediction error. A 

perfect model fit is highlighted by an   value of 1, which denotes perfect correlation between 

predicted and observed data. Metrics used to evaluate model performance include MSE, MAE, 

RMSE, NSE, and  ². These metrics give a complete picture of the model's predicted accuracy 

and resilience. In an ideal or completely fitted model, the expected values for MSE, MAE, and 

RMSE are zero, indicating no prediction error. An R² value of 1 indicates a perfect match 

between expected and observed data. A model is considered accurate and dependable when its 

MSE, MAE, and RMSE values are near to zero and    is close to one. These statistical findings, 

which offer a numerical evaluation of model performance, show the data's dependability and 

credibility. Rough evaluation is made possible by metrics like MSE,                      
which guarantee that the model appropriately represents the underlying patterns in the data. The 

reliability and consistency of the predictions are confirmed by low values of MSE, MAE, and 

RMSE in conjunction with a high  , which strengthens the trust in the data and the predictive 

power of the model. 
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Figure 2: A multiple-layer flow chart illustrating the technique's computational processes 
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Problem

The reference data set for D N N s  is 

computed using the fde 12 numerical 

solver 

D N N s employed for approximation solution 
of Epidemiological Models in both 
Population w ith D isease Infection . 

M ethodology

outcom es

Analysis of Fractional Epidem iological M odels in both 
Population with Disease Infection .

A bsolute error MSE 

Mathematical 

Formulation

 

Figure 3: Presents comprehensive descriptions outlining the proposed approach. 
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4. Results and discussions 

The evaluation and clarification section of our research on Deep Neural Networks (DNNs) is 

very important since it is essential for efficiently classifying and analyzing data. A brief synopsis 

of the empirical results obtained from using DNNs is provided in this section. The profound 

implications and ramifications of these findings are then thoroughly discussed, with an emphasis 

on neural networks, to clarify their applicability to both the larger field of artificial intelligence 

and the study's purpose. We support further investigation, optimization, and development of 

DNN structures and their diverse applications. We highlight the significance of continued 

research and development efforts aiming at maximizing DNN efficiency, supporting 

interpretability, and broadening their applicability across various domains by explaining the way 

our findings act as a catalyst for raising the bar within artificial intelligence. The revolutionary 

potential of DNNs in driving creative developments in AI deserves special attention. DNNs are a 

key component in the development of intelligent systems because they enhance the capacity for 

sequential data analysis and decision-making. The principal aim of this study is to clarify the best 

approaches for handling the complexities present in epidemiological models by utilizing deep 

neural network (DNN) techniques. The main goal is to gain a thorough understanding of these 

models so that disease dynamics may be analyzed and predicted more accurately. The dynamical 

system's impressive results are shown in Figure 4, which demonstrates the use of transition states 

(TS). In particular, the dynamical model's observed gradients, which are measured as 2.24E-07, 

9.87E-08, 1.59E-06, and 3.15E-04, are strong indicators of the model's dependability and 

resilience in terms of faithfully capturing the dynamics of the Epidemiological Model. By 

incorporating transition states, the model demonstrates an improved ability to represent the 

complex nuances and variations present in the course of the disease. Scientists can feel confident 

using the dynamic Epidemiological Model in their future research endeavors because of the clear 

and concise visual representations provided in Figure 4. The minimal Mean Squared Error 

(MSE) is shown in Figure 5 as a graphic depiction of the way well the model captured the 

dynamics of the system under investigation. The remarkably low mean square errors (2.24E-07, 

9.87E-08, 1.59E-06, and 3.15E-04, respectively) at epochs 14, 21, 49, and 47 verify the model's 

strong performance in predicting target values during critical training stages. These findings 

support the model's dependability and practical applicability by highlighting its remarkable 

flexibility and potential for advancement. An important metric for assessing the reliability and 

efficacy of deep neural networks (DNNs) is the correlation between the input and error (CIE). 
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The correlation values between -20 and 20 lag periods are plotted on the graph. The y-axis 

measures the strength of the correlation, while the x-axis indicates the lag, or offset in the data 

point sequence. The temporal dynamics within DNNs can be profoundly understood through the 

CIE analysis, as illustrated in Figure 6. The network may be capturing some periodic or recurrent 

patterns in the input data, according to the cyclical pattern of correlations. By better 

understanding these correlations, the architecture and training procedure of the model can be 

improved, potentially improving its predictive ability and decreasing errors. The baseline for 

zero correlation is shown by the black dashed line. Deviations from this line show that the input 

has a quantifiable effect on the error. The majority of correlations fluctuate around this baseline, 

but at some lags, noticeable deviations become apparent, suggesting a large input influence. 

The significance of comprehending temporal dependencies in deep neural networks (DNNs) is 

highlighted by the graph. We are able to determine which historical inputs have a significant 

influence on the predictions made today by examining the correlation between input lags and 

errors. This realization is critical to enhancing the predictive accuracy and optimizing the model 

construction because it identifies critical time points that affect network performance and 

provides guidance for better feature engineering and data preprocessing techniques. The 

correlation analysis plays a crucial role in optimizing the efficiency of deep learning models, 

managing temporal dependencies, and improving their entire reliability. Figure 7 shows the auto-

correlation of error (ACE) for deep neural networks (DNNs) at various lags. The y-axis indicates 

the auto-correlation values, and the x-axis shows the lag period, which runs from -20 to 20. The 

temporal dependencies within the errors are displayed on the graph, demonstrating how previous 

errors affect subsequent ones. Prominent peaks and troughs suggest enduring error patterns by 

indicating significant auto-correlation at particular lags. The critical lags where error correlation 

is significant are highlighted by the red dotted lines, which represent the confidence limits. 

Values outside of these ranges are statistically significant. By addressing error persistence and 

improving temporal prediction accuracy, this analysis is essential for optimizing DNN 

performance. The error histogram (Er.H) for a variety of deep neural network (DNN) cases is 

shown in Figure 8. The range of prediction errors is shown by the x-axis, and their frequency is 

indicated by the y-axis. The histogram shows the concentration and dispersion of departures 

from the actual targets, offering insights into the distribution of prediction errors. Whereas a 

wider distribution denotes notable deviations, a high frequency of errors closes to zero indicates 

good prediction accuracy. The histogram peaks indicate typical error magnitudes, and the tails 

indicate instances of extreme errors. For the DNN models to function better overall and be more 
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robust, this analysis is essential for identifying and eliminating biases. The Time Series Response 

Plots (TSRP) using Deep Neural Networks (DNNs) for all Cases are shown in Figure 9. The 

graph provides insights into the behavior and performance of the DNN models in a variety of 

situations by illustrating the dynamic response trends over time. The Regression Analysis (RA) 

results using Deep Neural Networks (DNNs) for all Cases are shown in Figure 10. The graph, 

which illustrates the relationship between input variables and predicted outcomes through 

regression analysis, clarifies the efficacy and predictive power of the DNN models in a variety of 

scenarios. Regression analysis (RA) in Figure 10 also shows an excellent match of the data 

points with the regression line, suggesting strong accuracy in forecasting. The data points' 

closeness to the line indicates that the Deep Neural Networks (DNNs) used in the various Cases 

have strong capacity for prediction. Additionally, the analysis highlights the way the DNN 

models capture and explain the variance in the data, supporting their dependability for 

forecasting tasks, with an R-Square value that approaches 1.  

 
 

a) Training state of  CI b) Training state of  CII 
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c) Training state of  CIII d) Training state of  CIV 

Figure 4: Training state (TS) representations for all Cases adopting DNNs. 

  

a) MSE for CI b) MSE for CII 
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c) MSE for CIII d) MSE for CIV 

Figure 5: Mean Square Error (MSE) representations for all Cases adopting DNNs. 

  

a) CIE for CI b) CIE for CII 
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c) CIE for CIII d) IE for CIV 

Figure 6: Correlation Input  and  Error (CIE) for all  Cases  adopting DNNs. 

  

a) ACE for CI b) ACE for CII 
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c) ACE for CIII d) ACE for CIV 

Figure 7: Auto-Correlation of Error (ACE) for all Cases adopting DNNs. 

  

a) (EHg) Analysis for CI b) (EHg)  Analysis for 

SII/CI 
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c) (EHg)  Analysis for SIII/CI d) (EHg)  Analysis for 

SIV/CI 

Figure 8: Error Histogram (Er.H) representations for all   Cases adopting DNNs.. 

 

 

a) TSRP for CI b) TSRP for CII 
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c) TSRP for CIII d) TSRP for CIV 

Figure 9: Time series response plots (TSRP) for all  Cases adopting DNNs. 

  

a) RA for SI/CI b) RA for SII/CI 
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c) RA for SIII/CI d) RA for SIV/CI 

Figure 10: Regression analysis (RA) for all  Cases adopting DNNs. 

 
 

a) Case-I b) Case-II 
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c) Case-IIII d) Case-IV 

Figure 10: Comparisons measures using AI based DNNs procedure to solve FEM-BPDI 

model. 

 
 

a) Ab. Err:  Case-I b) Ab. Err:  Case-II 
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c) A.Er : Case-III d) Ab. Err: Case-IV 

Figure 11: Ab. Err using the stochastic DNNs procedure to solve the FEM-BPDI model. 

 

The graphical simulations that illustrate the comparison of AI-based Deep Neural Networks 

(DNNs) used for FEM-BPDI model solving are presented in Figure 10. Four different cases, 

each with fractional orders of 0.25, 0.50, 0.75, and 1.0, were simulated using the fde12 solver. 

The objective was to evaluate the way the DNN process performed in generating a target 

solution that, based on empirical data, not only fit the reference solution but also showed 

superior predictive ability. An analysis of four different cases is shown in Figure 10, where the 

FEM-BPDI epidemiological model is solved by AI-based Deep Neural Networks (DNNs). These 

stars represent solutions that the DNN procedure effectively predicted, demonstrating its 

exceptional capacity to match reference solutions with strong forecasting abilities. This graphical 

illustration highlights the way DNNs perform in producing reliable and precise results in the 

complicated realm of the FEM-BPDI model. A sign of the AI approach's strong reliability is the 

close match between the numerical solutions and the DNN predictions. This alignment 

demonstrates the ability of DNNs to precisely represent the complex dynamics of 

epidemiological models. This represents an important step in the application of AI to 

epidemiological modeling and forecasting, as the efficacy of the DNN methodology in 

solving the FEM-BPDI model. Absolute error is the term used to describe the difference between 

the actual observed values in the dataset and the predicted values produced by the DNN model 
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when using Deep Neural Networks (DNNs) for modeling and prediction. By calculating the 

amount of the difference between the model's predicted values and the actual values, it can be 

used to determine the precision of the model. Because the DNN model predicts things accurately 

and reliably, it is important to achieve the lowest possible absolute error. The model performs 

better and has higher precision when its absolute error is smaller, indicating that its predictions 

are closer to the actual observed values. In many applications, especially those involving finance, 

healthcare, and engineering, where accurate forecasts are critical to the process of making 

decisions, minimizing absolute error is paramount. As a result, the DNN model's ability to 

precisely capture the underlying patterns and relationships in the data is indicated by the smallest 

absolute error, which generates predictions and decisions that are more trustworthy. Figure 11 

presents a Absolute Error (Ab. Err) produced during the FEM-BPDI model solving process using 

stochastic Deep Neural Networks (DNNs). This minimal absolute error performs as a crucial 

metric that illustrates the effectiveness of the suggested method. The graph illustrates the 

efficacy and accuracy of the stochastic DNNs approach in obtaining precise solutions in the 

empirical domain of the FEM-BPDI model, thus emphasizing its potential for both scientific 

advancement and practical application. The achievement of a minimal absolute error provides 

strong evidence of the effectiveness of our suggested method, highlighting its dependability and 

resilience. This result not only validates the correctness of our method but also emphasizes how 

it can completely change current practices. This kind of success acts as a catalyst for more 

research and application of this novel method across a range of scientific fields.  

 

5. Conclusion 

Mathematical modeling has become a very popular tool for understanding and analyzing the 

spread and control of infectious diseases as a result of the increase in environmental 

contamination. As a result, to depict complex scenarios, the literature offers a wide variety of 

intricate models for epidemics and predator-prey relationships. To the best of our knowledge, no 

prior research has included the use of a fractional derivative in a predator-prey model that 

includes disease dynamics in both species. This work offers new insights into the complex 

relationships between infection and population dynamics by discussing the formulation and 

implications of such a fractional-order predator-prey model. An important finding is that the 

disease can be eliminated from the system by increasing the attack rate of infected prey. On the 

other hand, the vulnerable population of predators can be preserved from disappearance by 



  

145 

 

lowering the order of the fractional derivative. These results unequivocally show that the 

fractional derivative is an important factor in regulating the dynamics of the system under 

consideration. In this work, we effectively showcased the use of deep neural networks (DNNs) 

for fractional epidemiological model analysis and simulation in disease-infected populations. 

Our method makes use of DNNs' learning and computational power to simulate the complex 

dynamics present in fractional-order systems, which are becoming more and more known for 

their capacity to represent memory and genetic characteristics in epidemiological processes. Our 

models' outcomes show that DNNs can efficiently approximate fractional differential equation 

solutions, giving researchers and public health officials a useful tool to more precisely forecast 

the course of infectious diseases. The following are our main findings: 

 Beyond the capabilities of traditional integer-order models, the DNNs demonstrated 

superior accuracy in simulating the complex behaviors of fractional-order systems, which 

is relevant to disease dynamics in the real world. 

 The efficacy of the suggested approach in simulating diverse epidemiological scenarios 

suggests its adaptability to a range of infectious diseases. 

 By employing DNNs, computational complexity was greatly decreased, increasing the 

viability and efficiency of analyzing large-scale epidemiological data. 

 Time series plots show how well the data was handled and how precisely outcomes were 

obtained. 

 The developed DNNs show effectiveness, dependability, and robustness throughout the 

computation, as shown by getting mean squared error regression matrices, and histogram 

error representations. The reliability and efficacy of the models are further supported by 

time series plots, autocorrelation graphs, and correlation input-by-error plots. 

 A model's stability is indicated by a low Mean Squared Error (MSE), which reflects the 

model's accuracy and resilience in making predictions. 

 The model's strength is demonstrated by the achievement of minimal or negligible 

absolute error, which shows how well-predictive and precise it is at gathering data 

patterns. 

An important development in the computational study of infectious diseases is the combination 

between fractional epidemiological models and deep neural networks. Scientists and public 

health officials can use this novel approach as a powerful tool to enhance disease prediction, 

control, and prevention approaches. To further validate the predictive power of the suggested 
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model and evaluate its applicability in various epidemiological contexts, future research could 

investigate the integration of real-world data. The performance and generalizability of the model 

for more precise disease forecasting may also be improved by looking into possible 

improvements to neural network topologies and training approaches. 
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