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Abstract: In this paper we have evaluated certain fractional integral operators associated with Saxenas
I-function using the operators of fractional integration. The results obtained are of general character
and are reduced to the known results on specializing the parameters. By leveraging the properties
of fractional calculus, we investigate new integral transforms involving in this function. We present
novel results that extend the existing theory and provide a framework for solving complex integral
operators in broadening the scope in this function. These results have potential applications in various
fields such as astrophysics, engineering, and applied mathematics, where the I-function and fractional
calculus play a crucial role.
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1. Introduction

Fractional calculus, both in its classical and generalized forms, has played a significant role in
developing new classes of special functions. These functions are particularly useful in fractional cal-
culus and integral transforms, as they help simplify complex analytical problems, making them more
tractable [1, 2]. One of the fundamental applications of fractional calculus is its ability to define and
analyze special functions, including the fractional integral of the H-function with different arguments,
which has been extensively studied [3], [4].

In this paper, we explore certain fractional integral and derivative formulas associated with Saxenas
I-function, which is defined as follows:

I[Z] = Im,n
pi,qi:r[Z] =

[
Z
∣∣∣∣ (a j,A j)1,n;(a ji,A ji)n+1,pi

(b j,B j)1,m;(b ji,B ji)m+1,qi

]
=

1
2πi

∫
L

ϒ(s)Zsds (1)

[5, 6].
where i =

√
−1, and the kernel function ϒ(s) is given by:

ϒ(s) =
∏

m
j=1 Γ(b j−B js)∏

n
j=1 Γ(1−a j +A js)

∑
r
i=1 (1−b ji +B jis)∏

qi
j=n+1 Γ(a ji−A jis)

(2)

[7, 8, 9].
Here, Pi (i = 1, . . . ,r) is a finite number, and the parameters A j,B j,A ji,B ji are real and positive.

The complex parameters a j,b j,a ji,b ji must satisfy the condition:



a j(bh + v) 6= Bh(a j−1− k), v,k = 0,1,2, . . . ,
h = 1,2, . . . ,m; j = 1,2, . . . ,r.

The contour L extends from σ− i∞ to σ + i∞ (where σ is real) in the complex s-plane. The contour
is chosen such that the points:

s = (a j−1− v),A j, j = 1,2, . . . ,n; v = 0,1,2, . . .
s = (b j + v),B j, j = 1,2, . . . ,m; v = 0,1,2, . . .

lie to the left-hand side and right-hand side of the contour L, respectively [10, 11].
The subsequent sections of this paper delve into the fractional integral and derivative formulas

involving Saxenas I-function, highlighting their significance and applications in various analytical
frameworks.

1.1. Fractional Integrals And Derivatives
Let ϕ ,ψ and ζ be complex number, and let x ∈ R+ = (0,∞). Following Saigo [15][16] fractional

integral (ℜ(ϕ)> 0) and (ℜ(ϕ)< 0) first kind of a function f (x) on R forms:

Iϕ,ψ,ζ
0,x f =

x−ϕ−ψ

Γ(ϕ)

∫ x

0
(x− t)ϕ−1

2F1

(
ϕ +ψ,−ζ ;ϕ;1− t

x

)
f (t)dt, ℜ(ϕ)> 0

=
dn

dxn Iϕ+ψ−ζ

0,x f , 0 < ℜ(ϕ)+n≤ 1, (n = 1,2,3...)
(3)

Where 2F1(a,b,c) is Gauss’s hypergeometric function.
Fractional integral (ℜ(ϕ)> 0) and derivative (ℜ(ϕ)< 0) of second kind of a function f(x) on R+ are
given by:

Jϕ,ψ,ζ
0,∞ f =

1
Γ(ϕ)

∫
∞

0
(t− x)ϕ−ψ

2F1

(
ϕ +ψ,−ζ ;ϕ;1− x

t

)
f (t)dt, ℜ(ϕ)> 0

= (−1)n dn

dxn Jϕ+n,ψ−n,ζ
x,∞ f , 0 < ℜ(ϕ)+n≤ 1, (n = 1,2,3...)

(4)

The Riemann-Liouville,Weyl and Erdelyi-Kober fractional operators are interpreted as special cases of
the operators I and J as discussed by Saigo [7]

Rϕ

0,x f = Iϕ,−ϕ,ζ
0,x f =

1
Γ(ϕ)

∫ x

0
(x− t)ϕ−1 f (t)dt,ℜ(ϕ)> 0

=
dn

dxn Rϕ+ζ

0,x f ,0 < ℜ(ϕ)+n≤ 1,(n = 1,2,3, ...)
(5)

W ϕ

0,∞ f = Jϕ,−ϕ,ζ
0,∞ f =

1
Γ(ϕ)

∫
∞

x
(x− t)ϕ−1 f (t)dt,ℜ(ϕ)> 0

= (−1)n dn

dxnW ϕ+ζ

0,∞ f ,0 < ℜ(ϕ)+n≤ 1,(n = 1,2,3, ...)
(6)

Eϕ,ζ
0,∞ f = Iϕ,0,ζ

0,x f =
1

Γ(ϕ)
x−ϕ−ζ

∫ x

0
(x− t)ϕ−1 f (t)dt,ℜ(ϕ)> 0 (7)

Kϕ,ζ
x,∞ f = Jϕ,0,ζ

x,∞ f =
1

Γ(ϕ)
xn
∫

∞

x
(t− x)ϕ−1t−ϕ−ζ f (t)dt,ℜ(ϕ)> 0 (8)
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The operators I and J defined in (3) and (4) are discussed and applied in many articles. It is notable that
the operators can be represented by the Laplace transformation operators and its inverse [16]. In the
following discussion we need fractional integral and derivative of a power function studied by Saigo
and Rana.

Lemma 1: Let ϕ,ψ,ζ and ℑ be complex numbers. Then there hold the following formulae:

Iϕ,ψ,ζ
0,∞ tℑ =

Γ(1+ Im)Γ(1+ Im−ψ−ζ )

Γ(1+ Im−ψ)Γ(1+ Im+ϕ +ζ )
xℑ−ψ (9)

provided that ℜ(ℑ)> Max[0,ℜ(ψ)−ζ ]−1, and

Iϕ,ψ,ζ
0,∞ tℑ =

Γ(ψ− Im)Γ(ζ −ℑ)

Γ(−ℑ)Γ(ϕ +ψ +ζ −ℑ)
xℑ−ψ (10)

If ℜ(ϕ)> 0,ℜ(Im)<min[ℜ(ψ),ℜ(ζ )],or i f ℜ(ϕ)≤ 0,0<ℜ(ϕ)+n≤ 1, and ℜ(Im)<min[ℜ(ψ),ℜ(ζ )]
, where n is positive integer.

1.2. Fractional Integral And Derivatives Of The I-Function
If ϕ,ψ,ζ and ℑ be complex numbers and in k > 0 and

|arg(z)|< 1
2

ϑw,w > 0,
p

∑
j=1

B j

p

∑
j=1

A j ≤ 0 (11)

Then the following result holds:
(I)

Iϕ,ψ,ζ
0,x

{
tℑIm,n

pi,qi:r

[
ztk
∣∣∣∣ (a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi

]}
= xℑ−ψ Im,n+2

pi+2,qi+2:r

[
zxk
∣∣∣∣ (−ℑ,k),(ψ−ζ −ℑ,k),(a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi,(ψ−ℑ,k),(−ϕ−ζ −ℑ,k)

] (12)

For

ℜ(ℑ)+ k mini≤ j≤m

[
ℜ

(
b j

B j

)]
< [−1,ℜ(ψ−ζ )−1]

which can be proved with the help of lemma and explain with figure (1) which is given in below while
putting parameters in (12). Similarly, under the same assumptions we have the formula:

Figure 1: The peak at the centre gradually decreases in all directions.
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The image depicts a 3d plot of a function with X and Y as independent variables that creates a bell-
shaped curve(likely a Gaussian function.)

(II)

Jϕ,ψ,ζ
0,∞

{
tℑIm,n

pi,qi:r

[
zt−k

∣∣∣∣ (a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi

]}
= xℑ−ψ Im,n+2

pi+2,qi+2:r

[
zx−k

∣∣∣∣ (1−ψ +ℑ,k),(1−ζ −ℑ,k),(a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi,(1+ℑ,k),(1−ϕ +ζ +ℑ,k)

] (13)

For

ℜ(ϕ)> 0,ℜ(ℑ)− k maxi≤ j≤m

[
ℜ

(
b j

B j

)]
< min[ℜ(ψ),ℜ(ζ )]

or

ℜ(ϕ)≤ 0, 0 < ℜ(ℑ)+n≤ 1, ℜ(ϕ)− k maxi≤ j≤m

[
ℜ

(
b j

B j

)]
< min [ℜ(ψ−ζ ),ℜ(ζ )]

with a positive integer n
which can be proved with the help of lemma and explain with figure (2) which is given in below while
putting parameters in (13). Similarly, under the same assumptions we have the formula:

Figure 2: Complex function plotted in real space.

This image show a 3d visualization of a complex function plotted in real space. The graph displays
what appears to be the magnitude(abssolute value ) of a complex function with two input variable X
and Y.

(III)

Iϕ,ψ,ζ
0,x

{
tℑIm,n

pi,qi:r

[
ztµ(x− t)ν

∣∣∣∣ (a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi

]}
=

x−ψ+ℑ

Γ(ϕ)

∞

∑
k=0

(ϕ +ψ)k(−ζ )k

(ϕ)kk!
Im,n+2
pi+2,qi+1:r

[
zxµ+ν

∣∣∣∣ (−ℑ,µ),(1−ϕ− k,−ν),(a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi,(ϕ−ℑ,−k),(−ϕ−ℑ− k,µ +ν)

]
(14)

provided (in addition to the convergence and existence condition) that

min
1≤ j≤m

[
ℜ

(
b j

B j

)]
> max

[
ℜ

(
−ℑ−1

µ

)
,ℜ

(
−ϕ +1

ν

)]
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which can be proved with the help of lemma and explain with figure (3) which is given in below while
putting parameters in (14). Similarly, under the same assumptions we have the formula:

Figure 3: plot The expression with a distinct and unusual feature.

The image show a 3d plot of a mathematical expression with a distinct and unusual feature. This
appear to represent a mathematical function with a singularity or pole. (IV)
setting

(h(t,x)) = tℑIm,n
pi,qi:r

[
ztµ(x− t)ν

∣∣∣∣ (a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi

]
(15)

We have

Jϕ,ψ,ζ
0,∞

{
tℑIm,n

pi,qi:r

[
zt−k(x− t)ν

∣∣∣∣ (a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi

]}
=

x−ψ+ℑ

Γ(ϕ)

∞

∑
k=0

(ϕ +ψ)k(−ζ )k

(ϕ)kk!
Im+1,n+1
pi+2,qi+1:r

[
zxµ+ν

∣∣∣∣ (1−ψ− k,µ),(ϕ +ψ−ℑ+ k,µ),(a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi,(ψ−ℑ,µ +ν)

]
(16)

provided (in addition to the convergence and existence condition) that

min 1≤ j≤m

[
ℜ

(
ψ−ℑ

µ +ν

)
,min 1≤ j≤m

[
ℜ

(
b j

B j

)]]
> max

[
ℜ

(
−ϕ

ν

)
,min 1≤ j≤m

[
ℜ

(
a j−1

A j

)]]
(17)

which can be proved with the help of lemma and explain with figure (4) which is given in below while
putting parameters in (16). Similarly, under the same assumptions we have the formula:
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Figure 4: Plot show a mathematical expression with a distinctive feature.

The 3d plot show a mathematical expression with a distinctive feature a mostly flat yellow surface
at z=0 with a sharp, narrow spike extending downward at a specific point in the X-Y plane.

Proof: Replacing the I-function by its Mellin-Barnes type integral and interchange the order of
integration and summation which permissible under the conditions stated, substituting t = x

4 in (4) and
then using the beta integral appropriately we get :

Jϕ,ψ,ζ
0,∞

{
tℑIm,n

pi,qi:r

[
ztµ(x− t)ν

∣∣∣∣ (a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi

]}
=

x−ψ+ℑ

Γ(ϕ)

∞

∑
k=0

(ϕ +ψ)k(−ζ )k

(ϕ)kk!
Im+1,n+1
pi+2,qi+1:r

[
zxµ+ν

∣∣∣∣ (1−ϕ− k,ν),(ϕ +ψ−ℑ+ k,µ),(a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi,(ψ−ℑ,µ +ν)

]
(18)

which is required result.
Particular Case:
(I) The relation between H and I function is given by

Im,n
pi,qi:r

[
Z
∣∣∣∣ (a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi

]
= Hm,n

pi,qi:1

[
Z
∣∣∣∣ (a1,A1),(a2,A2)...(api,Api)

(b1,B1)(b2,B2)(bqi,Bqi)

]
(19)

(II) Putting ψ =−ϕ in (16), it reduces to Weyl fractional integral as

W ϕ
x,∞

{
tℑIm,n

pi,qi:r

[
ztµ(x− t)ν

∣∣∣∣ (a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi

]}
=

xϕ+ℑ

Γ(ϕ)
Im+1,n+1
pi+2,qi+1:r

[
zxµ+ν

∣∣∣∣ (1−ϕ,ν),(−ℑ,µ),(a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi,(ϕ−ℑ,µ +ν)

] (20)

(III) Putting ψ in (16) , it reduces to Kober fractional integral, we have

Kϕ,ζ
x,∞

{
tℑIm,n

pi,qi:r

[
ztµ(x− t)ν

∣∣∣∣ (a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi

]}
=

xℑ

Γ(ϕ)
Im+1,n+1
pi+2,qi+1:r

[
zxµ+ν

∣∣∣∣ (1−ϕ,ν),(ϕ +ζ −ℑ,µ),(a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi,(ζ −ℑ,µ +ν)

] (21)

If µ is negative, then replacing by (−µ) and ν is negative then replacing −ν in (16), we get the
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following:

Jϕ,ψ,ζ
x,∞

{
tℑIm,n

pi,qi:r

[
ztµ(x− t)−ν

∣∣∣∣ (a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi

]}
=

x−ψ+ℑ

Γ(ϕ)

∞

∑
k=0

(ϕ +ψ)k(−ζ )k

(ϕ)kk!
Im+1,n+1
pi+2,qi+1:r

[
zx−µ−ν

∣∣∣∣ (1−ϕ− k,ν),(ϕ +ψ−ℑ+ k,µ),(a j,A j)1,n,(a ji,A ji)n+1,pi

(b j,B j)1,m,(b ji,B ji)m+1,qi,(ψ−ℑ,−µ−ν)

]
(22)

Similarly, we can prove the other results; details are omitted for the sake of brevity.

2. Conclusion

In this study, we have delved into the interplay between fractional integral operators and the I-
function is interpretation of H- function unveiling a series of new results the underscore the significance
of these mathematical constructs These findings extend the theoretical frameworks and also in new
avenues for practical for future to set applications in fields such as mathematical physics, engineering
, and applied mathematics. The integration of fractional integral operators with the I-function thus
offers a robust tool set for addressing complex problems and advancing research in these domains. To
describe memory and heredity effects, this may be used a tool.
Funding here: No Funding
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