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Abstract: This study numerically investigates the viscous heating mechanism in a nanofluid-filled
cavity subjected to external forces applied to the top lid, combined with laminar mixed convection
of the nanofluid. The vertical walls of the cavity are assumed to be insulated, non-conductive, and
impermeable to mass transfer. The horizontal walls are differentially heated, with the lower wall
maintained at a higher temperature while the upper wall remains cooler. The primary objective of
this research is to introduce a novel method that accurately incorporates height in the solution of heat
transfer equations, using transient analysis for numerical iterations. Although the fluid flow reaches
a steady state, the square cavity’s walls are fully insulated, and a constant heat flux is generated by
the motion of the top lid. This work aims to analyze the effects of viscous heating in a fully insulated
lid-driven cavity with Neumann boundary conditions under both no-slip and free-slip conditions, while
varying Rayleigh and Prandtl numbers as independent parameters. The simulations are performed for
a specific case where the Prandtl number Pr = 6.2 is fixed, while Rayleigh numbers and the volume
fraction of the nanofluid (water mixed with copper nanoparticles) range from 0% to 5%. The time-
dependent vorticity-stream function and thermal energy equations are discretized and solved using a
custom finite volume method combined with the artificial compressibility approach, implemented in
MATLAB. Despite viscous heating having a limited effect, the Neumann boundary conditions with
no-slip and free-slip assumptions influence heat retention within the insulated cavity. The free-slip
condition acts as a lubricant, leading to reduced temperature distribution, particularly under lower
Rayleigh numbers and higher Prandtl numbers, compared to the no-slip condition. This is attributed
to the free-slip effects under these conditions, which enhance heat dissipation and increase the fluid
velocity, further stabilizing the system.
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1. Introduction

Studying fluid motion can be done in a domain that is either square, rectangular, or cubic. For the
sake of backward compatibility, the viscous, non-variable density, fluids can be influenced by the sim-
plest mechanical derivational force. A lid-driven square or cubic cavity has one wall moving tangen-
tially towards the other bordering or immovable walls. Several scholars analyzed fluid flow problems
using simple geometry. In which they performed simulations through experiments as well as numeri-
cal techniques for the investigation and validation of specific physical phenomena. Theoretically, there



is widespread agreement that the Navier Stokes (NS) equations represent the most basic mathemati-
cal model that can be used to explore the flow field of fluids. By connecting the NS equations with
the stress tensors of relevant fluid models, it is possible to investigate both compressible and incom-
pressible flow fields simultaneously [1, 2]. Shankar et al. [1] explored the two-dimensional steady or
unsteady incompressible flow problems using an analytical and numerical set-up by taking into con-
sideration the NS equations as the fundamental mathematical model. Later on, Burggraf [3] expanded
the scope of his research to include numerical-analytical comparison. The efforts of Ghia et al. [4]
marked the beginning of the search for precision and efficacy. A two-dimensional square cavity with
the top wall moving with constant speed and steady nature of flow at Reynolds (Re) number up to 104

was estimated by Ghia et al. [4]. A series of experiments was carried out to analyze the flow inside the
cavity with different aspect ratios in three dimensions. Several research groups have constructed and
statistically analyzed three-dimensional test problems, leading to Deville et al. conclusions [5, 6, 7].
These results indicated that the spectral method improves the two-dimensional flow problem with more
accuracy. These kinds of efforts provide beneficial results for two-dimensional unsteady NS equations,
which are used to explore incompressible flow in lid-driven cavity problems, which goes on to become
a benchmark in the filed [7]. These collaborative efforts have yielded conclusive results at Re = 3200.
Therefore, their technique offers very exact numerical answers up to Re = 103. For Re = 103 Alben-
soeder used the method proposed by Botella and Peyret to obtain the extremely precise flow field over
a range of cavity lengths with both rigid and periodic boundary conditions [8, 9, 10].

Additionally, lid-driven cavity flow dynamics entail a number of elementary phenomena from the
field of fluid mechanics. Taylor [11] proposed the similarity solutions in which the Vortex problem is
discussed at the edges of the domain, caused by the existence of discontinuous boundary conditions.
A regularization or smoothing of the discontinuity might be thought of as an artifice that eliminates
the singularity. An experimental implementation of the lid-driven cavity faces key challenges due to a
pressure divergence at the singular corner. In addition, such discontinuity might result in pumping and
leaking effects. One further oddity has to do with the viscous flow that occurs close to the acute corners
that are formed by two walls that remain immovable. If the flow is confined at an angle, bifurcation
which is known as Hopf bifurcation, in the driven cavity is observed [11, 12, 13, 14, 15]. In addition to
numerical methods, other approaches, such as the bi-orthogonal series method and the usage of Green’s
functions, can be utilized in order to arrive at a resolution to issues of such nature. Prandtl-Batchelor
theorem predicted that at high Reynolds numbers with no instabilities, the inviscid core of uniform
vorticity for steady two-dimensional flow gives rise to building such a vortex. Thus, experiments and
numerical analysis both back up, vortex patterns which are analyzed by computer simulations [15, 16,
17]. On the other hand, it has been seen that at large values of the Reynolds number, the steady two-
dimensional flow is unstable. So, as the Re grows above a critical value, the cavity show vortices that
are in smaller size downstream towards the moving wall. The coupling between velocity and pressure
in the primitive variables can be transformed into discrete formulations to study incompressible NS
equations, which plays an important role in the convergence of any numerical technique in fluid flow
simulations. Additionally, the primitive variable (pressure) can be read by the equation of continuity.
There is no well-defined, separate, mathematical equation that can be used to describe pressure which
makes it hard to solve the incompressible NS equations [17, 18, 19, 20].

We quantitatively explore nanofluid laminar mixed convection in a square cavity. Insulated, non-
conducting, mass-transfer-impermeable vertical walls are postulated. The Argonne National Labora-
tory research group studied the use of nanometer-sized particles for the first time on a regular basis
more than a decade ago. The nanoparticles (typically between 1 and 100 nm in size) in a nanofluid
are suspended in the base fluid by means of a well-crafted colloidal suspension. As opposed to the
chemical instability of nanoparticles, which are typically composed of metals, metal oxides, or carbon,
basic fluids like water, oil, and Ethylene Glycol serve as good examples of nanoparticles. This group
may have been the first to call fluids with nanometer-sized particles nanofluids in 1995. He showed
that heat was moved much faster when copper or aluminum nanoparticles were suspended in water or
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other liquids [21, 22, 23]. A nanofluid is considered to be a single phase to study natural convection
in a 2D cavity by using copper water nanofluid with different volumetric fractions of Cu nanoparticles
in water which enhanced heat transfer for any Grashof number [21]. Nanofluids of copper-water and
Al2O3-water rises the thermal conductivity by increasing the percentage of solid volume fraction which
is suggested by Lee et al. [22]. He concluded that any new models of nanofluid thermal conductivity
should include size, surface area-dependent functionality, and structure-dependent actions. Therefore,
the convective heat transfer coefficient has been the subject of both theoretical and experimental re-
search, some of which has been recorded [22, 23, 24, 25].

Sandeep et al. [26] examined the effects of a volume percentage of dust particles in an MHD
nanofluid on the momentum and heat transfer behavior while the fluid was forced to flow over a
stretching surface. They used a computational method based on the Runge-Kutta approximation to
solve the differential equations. It revealed that fluid-particle interaction boosted heat transfer and re-
duced friction. When a Newtonian fluid is subjected to a mixed convection process involving multiple
heat sources in a lid-driven cavity, Zhou et al. [27] looked at the Boussinesq approximation in the
thermal energy equation. Rahman et al. [28, 29] found that the magnetic field and Joule heating of a
lid-driven flow with a semi-circular heated wall are independent of viscous heating. The viscous terms
used to calculate the meteorite’s surface temperature are a part of the thermal energy calculation for a
highly viscous flow. Future studies may explore Newtonian homogeneous and heterogeneous nanoflu-
ids as cavity-flow-occupied fluids with viscous heating and sliding effects [29, 30, 31, 32, 33, 34]. A
square cavity filled with nano-fluids which consists of several nano-particles (water plus nano-particles
of Cu, Ag, TiO2 & Al2O3) along different wall conditions, give rise to uniform temperature distribu-
tion, is investigated by using finite volume methodology together with mesh independent scheme to
get highly accurate solution of the coupled partial differential equations [35]. Tiwari et al. [36] in-
vestigated the nanofluid regime (nanoparticles of Copper & water) for a partially heated cavity with
two-sided lids along the different directions of wall movement and controllable Richardson number.
Nano-fluids features are analyzed by a number of factors such as various boundary conditions which
are related to temperature, volume fractions of different solid nano-particles, Rayleigh number effects,
average Nusselt number, and partitions of locations. This yields enclosure heat transfer correlations for
different thermal boundary conditions as well as source terms for various wall settings to investigate
the natural convection phenomena using water base nanofluids. This is done so that the nanofluids can
cool the heat source more effectively, within a nanofluid-filled container that oscillated in heat flow,
periodic natural convection was an idea that was considered by certain researchers. In buoyancy-driven
flow in a cavity, non-uniform surface heating affects flow and heat transfer, and it is used in crystal de-
velopment in liquids, energy storage, geophysics, solar distillers, and other fields [32, 33, 35, 36]. In
order to maximize and enhance the amount of heat that is transferred by natural convection within a
square closed cavity.

Although a significant amount of work has been devoted to investigating situations of the square
as well as rectangular cavities filled with nanofluid, very few works have concentrated on the inves-
tigation of numerical discretization. In order to tackle problems involving conductive heat transfer,
convective heat transfer, or a mixture of the two into regular geometries, for the purpose of solving
the Navier-Stokes equation in enclosures while taking into account the energy equation, more specific
order four algorithms have been utilized. The creation of a novel strategy for the solution of heat
transfer equations including convection is the purpose of this body of work. The novel method uses a
staggered grid approach with finite volume and combines it with artificial compressibility. Therefore,
such demonstration of the usefulness of the method and to gain an understanding of how the natural
convection mechanism is affected when nanofluids are present in closed square systems. Patankar et
al. [14] introduced the first attempt at the segregated method in which pressure is computed in two
steps; first find the intermediate value for the velocity field from the guess pressure value while in
2nd step, the computed value can be validated through continuity equation. The absence of a time
derivative for the pressure variable in the continuity equation makes it more difficult. Addressing such
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difficulty in terms of time derivative pressure in the continuity equation is the collateral objective of
the current article. The methods increase the stability of the pressure solver, which in turn improves
the whole method’s performance. A major problem with these approaches is that they do not impose
a connection between velocity and pressure throughout the linearized system’s solution. This slows
down convergence as the number of grid points rises. The numerical approach is the backbone of this
simplest but most complicated (in terms of numerical) problem. The originality of the issue involves
the following;

1. The assessment of the Kinetic energy,
2. The derivation to Vorticity Stream function,
3. Finite Volume staggered grid approach,
4. Weak Compressibility.

The motivation for the current study started in the introduction section while the assessment of
Kinetic energy is done in section 2. A brief description of mathematical modeling is introduced in
section 3 which then derives the governing system with specific boundary conditions. Section 4 vor-
ticity Stream function technique is discussed. Following that, section 5 gives a short description of
the finite difference (FD) method, followed by staggered grid finite volume (FV) and Weak (Artificial)
Compressibility approaches. This section overviews numerical approaches for the approximation of
functions and derivatives. In section 6, an analysis of the article results is discussed.

2. Kinetic Energy of Incompressible Flow

Fluids, in contrast to gases, cannot be compressed unless very large forces are applied to them. As
a result, the behavior of a fluid is very similar to that of an incompressible material namely, div U = 0,
and the continuity equation transforms to an equation for the transfer of density, i.e

∂ρ

∂ t
+U .5ρ = 0. (1)

The equations whose numerical solutions will be discussed in more depth in the next sections. We
also make the assumption that the density of the fluid remains the same throughout time (ρ = ρ0 = 1).
This is the common assumption for many different types of fluids, including oil or water. After that,
we have the following incompressible Navier Stokes equations;

∂U
∂ t

+(U .5)U︸ ︷︷ ︸
Convection

=− 1
ρ0
5P+ν 4U︸︷︷︸

Diffusion

+F f orces, (2)

div U = 0. (3)

Where ν =
µ

ρ0
in equation (2). Also, density is constant which is in normalized form.

U = 0, at Boundary

U(0) =U0, in Domain

Therefore, the kinetic energy of the fluid is defined by the following relation,

Energykinetic(t) =
1
2

∫
Domain

|U |2dx. (4)
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Time derivative is provided by when there are no volumetric forces.

d
dt

Energykinetic(t) =
∫

Domain
U U tdx. (5)

In connection to equation (2), we can write.

d
dt

Energykinetic(t) =
∫

Domain
U (−(U .5)U︸ ︷︷ ︸

Convection

−5P+ν 4U︸︷︷︸
Diffusion

)dx.

d
dt

Energykinetic(t) =−
∫

Domain
U (U .5)U)dx−

∫
Domain

U(5P)dx+ν

∫
Domain

U(4U)dx. (6)

A detailed description of each term can be followed by Gauss’s theorem;∫
Domain

U (U .5)U)dx =
1
2

∫
Domain

U5 (|U |2)dx−
∫

Domain
U .(U× rot U)︸ ︷︷ ︸

=0

dx.

∫
Domain

U (U .5)U)dx =
−1
2

∫
Domain

(div U)︸ ︷︷ ︸
=0

(|U |2)dx+
1
2

∫
Domain

(|U |2)(U .n)︸ ︷︷ ︸
=0

ds.


(7)

which shows that 1st term in equation (5) is zero,

Term1 =
∫

Domain
U (U .5)U)dx = 0. (8)

∫
Domain

U5Pdx =
∫

Domain
(div U)︸ ︷︷ ︸

=0

Pdx+
∫

Boundary
P.(U .n)︸ ︷︷ ︸

=0

ds

which shows that 2nd term in equation (5) is zero,

Term2 =
∫

Domain
U5Pdx = 0. (9)

For further information, let us look again equation (6),

d
dt

Energykinetic(t) = ν

∫
Domain

U(4U)dx.

d
dt

Energykinetic(t) = ν

∫
Domain

U1(4U1)dx+ν

∫
Domain

U2(4U2)dx+ν

∫
Domain

U3(4U3)dx.

Again by applying Gauss’s theorem,

d
dt

Energykinetic(t) = ν

3

∑
n=1

(−
∫

Domain
(|5Un|2dx+

∫
Boundary

Un (5Un.n)︸ ︷︷ ︸
=0

ds),
d
dt

Energykinetic(t), (10)

d
dt

Energykinetic(t) =−ν

3

∑
n=1

∫
Domain

(|5Un|2dx≤ 0. (11)

As a direct result of equation (10), the amount of the kinetic energy of the fluid that is transferred
reflects the losses which are occurring as a result of friction present in a viscous flow.
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3. Mathematical formation to governing system

Consider a square cavity filled with a nanofluid and assumed that the vertical walls are insulating,
non-conducting, and impervious to the movement of mass with differential heating on the horizontal
wall at a hot condition (bottom wall), while the top wall is kept at a colder temperature, see Figure 2.
The nanofluid contained within the enclosure exhibit Newtonian behavior with incompressible nature
and has a laminar flow. It is presumed that the nanoparticles have a shape and size that are both con-
sistent with one another. In addition to this, it is also considered, the fluid phase and the nanoparticles
are both in a condition of thermal equilibrium and that they are moving at the same velocity. We have
looked at the continuity, momentum, and energy equations for an unsteady flow in two dimensions gov-
erned by a Newtonian fluid with a Fourier constant feature. Henceforth, the amount of heat transferred
between sides by radiation is insignificant in comparison to the amount transferred via other means of
heat transfer. The two-dimensional, unsteady, and incompressible NS (Navier-Stokes) equations for
flow with the assumption that the thermal characteristics remain the same, are as follows:

Figure 1: shows with Cartesian coordinates, a two-dimensional model of lid-driven cavity flow.

x-directional Momentum:

ρn f (ut +uux + vuy) =−px +µn f (∆
2u)+F f orces︸ ︷︷ ︸

=0

, (12)

y-directional Momentum:

ρn f (vt +uvx + vvy) =−py +µn f (∆
2v)+gT ((1−ϕ)ρ f β f +ϕρsβs), (13)
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Equation for Energy:

T t +uT x + vT y =
Ke f f

(ρCp)n f
(∆2T ). (14)

3.1. Thermophysical properties of the regular nanofluid
Furthermore, µn f , ρn f , (ρCp)n f and kn f are the nanofluids values for its dynamic viscosity, density,

heat capacity, and the thermal conductivity respectively where the equations to evaluate their thermo-
physical characteristics are provided in the following Table 1.

Properties Nanofluid Pure Water

Dynamic Viscosity µn f = µ f
(1−ϕ)2.5 –

Effective Density of nanofluid ρn f = (1−ϕ)ρ f +ϕρs ρn f (kg/m3)=997.7
Heat capacity of nanofluid (ρCp)n f =(1−ϕ)(ρCp) f +ϕ(ρCp)s Cp(J/kg.K)=4179

Effective Thermal Conductivity of nanofluid kn f = ks+2k f−2ϕ(k f−ks)

ks+2k f+ϕ(k f−ks)(k f )
K(W/m.K)=0.613

Table 1: Thermophysical properties of the regular nanofluid [37].

3.2. Non-dimensionalization technique
We introduce the non-dimensionalization technique to the system in equations (12– 14), in the

following way,

x =
x
L
, y =

y
L
, u =

uL
ν f

, v =
vL
ν f

, t =
t
τ
, τ =

t
L2/ν f

, p =
p
p̃
, p̃ =

ρ f ν2
f

L2 , & Θ =
T −T c

T h−T c
. (15)

Such transformation 15 leads to the following non-dimensional numbers, which are

Ra = gβ f L3 T h−T c

ν f α
, & Pr =

ν f

α f
. (16)

3.3. Governing system
It has been determined that the equation that Brinkman provided should be utilized as the rela-

tion for effective viscosity in which experimentally measured the apparent viscosity of the transformer
oil-water nanofluid and of the water-copper nanofluid in the temperature range of 200C – 500C. The
experimental results reveal relatively good agreement with Brinkmans theory [38, 39, 41, 42]. There-
fore, the proposed governing system which consists of continuity, momentum, and energy equations
can be used to get an analysis of unsteady laminar flow. Hence, we have the following system:

ρn f (ut +uux + vuy) =−px +µn f (∆
2u),

ρn f (vt +uvx + vvy) =−py +µn f (∆
2u)+

Ra
β f Pr

Θ((1−ϕ)ρ f β f +ϕρsβs),

Θt +uΘx + vΘy =
αn f

α f Pr
(∆2

Θ).


(17)
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3.4. Boundary conditions
We imposed U as the top lid wall velocity and u = v = 0 for other walls, also in x and y direction,

velocity components are u and v, and temperature gradients are Tx|x=0 Tx|x=L, Ty|y=0 & Ty|y=L respec-
tively. Whereas the characteristics height is denoted by H and L is related to the characteristics length
of the lid-driven cavity. As buoyancy force effects are negligible due to the top lid generating viscous
heating, therefore it is excluded from analysis which is related to the heat transfer. The thermal energy
equation does not include the Boussinesq approximation, hence, there is no convection taking place
between the bottom fixed lid and the top moving lid [38, 39, 40, 41].

4. Methodology

The governing equations for the current study have been written out in the dimensionless form as
follows, taking into account the various assumptions that have been discussed thus far:

4.1. Vorticity Stream function
The Vorticity Stream function equation can be founded by taking the curl of the equation (2):

5× ∂U
∂ t︸ ︷︷ ︸

Temporal

+5× (U .5)U︸ ︷︷ ︸
Convective

=−5× 1
ρ0
5P︸ ︷︷ ︸

Pressure

+ν5×52 U︸ ︷︷ ︸
Viscous

. (18)

The following is one possible introduction to the stream function. As an added bonus, the vorticity
can be described as follows:

u =
∂ψ

∂y
, v =−∂ψ

∂x
, & ω =

∂v
∂x
− ∂u

∂y
. (19)

Consider term-by-term analogy, with reference to equation (18), we have

Temporal:

5× ∂U
∂ t

=
∂

∂ t
(5×U) =

∂

∂ t
−→
ω .

Convective:

5× (U .5)U =5× (
1
2
5 (U .U)−U×−→ω )︸ ︷︷ ︸

Vector Identity

,

=5×5︸ ︷︷ ︸
=0

(
1
2
(U .U)−5× (U×−→ω ),

= (U .5)−→ω − (−→ω .5)U +−→ω (5.U)︸ ︷︷ ︸
CE=0

.


Pressure:

5× 1
ρ0
5P=5×5︸ ︷︷ ︸

=0

(
1
ρ0

P) = 0.
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Viscous:

5× (ν52 U) = ν52 (5×U) = ν52−→
ω .

Hence, recombining the temporal, convective, pressure, and viscous terms to get the following
vorticity transport equation;

∂
−→
ω

∂ t
+(U .5)−→ω = (−→ω .5)U +ν(52−→

ω ) (20)



∇2ψ =−ω

∂ψ

∂y
∂ω

∂x −
∂ψ

∂x
∂ω

∂y =
µn f

ν f ρn f
∇2ω +(∂Θ

∂y )
Ra

Prβ f ρn f
((1−ϕ)ρ f β f +ϕρsβs)

∂ψ

∂y
∂Θ

∂x −
∂ψ

∂x
∂Θ

∂y =
αn f

α f Pr ∇2Θ

(21)

4.2. Finite Volume (FV) approach
Transformation of PDEs into a system of linear algebraic equations can be done with the help

of the finite volume technique which is quite well structured for simulations of fluid flow problems.
Such a technique is distinctive and contains mostly two stages. In the first step, transformation can be
performed by finding the integral to the differential equation which involves changing the volume and
surface integrals into discrete algebraic relations over the elements. In the second step, interpolation
profile assumption can be chosen to approximate the changes in the variables which exist within the
confined volume and related surface values of the variables to their cell values can be transformed into
algebraic relations. The selected approximations after these two steps provide a solid foundation for
the accuracy and robustness of the resulting technique [39, 40, 41]. Let us focus on the discretization
of the various parts of the general conservation equations.

∂

∂ t
(ρϕ)+5.(ρV ϕ) =5.(5ϕ)+Ssource (22)

∫
V

∂

∂ t
(ϕ)dV =−

∫
V
5.(uϕ)dV +

∫
V
5.(k5ϕ)dV +

∫
V

SϕdV (23)

Convert all fluxes to surface integrals by Gauss Divergence theorem,∫
V

∂

∂ t
(ϕ)dV ≈ ∂ϕc

∂ t
5Vc∫

V
5.(uϕ)dV =

∫
sur f ace

(uϕ).nds = ∑ f1, f2,...

∫
si

(uϕ).ndsi

for u = (u,v) ∫
V
5.(uϕ)dV =

∫
f e

uϕdse−
∫

f e
uϕdsw +

∫
f e

vϕdsn−
∫

f e
vϕdss (24)

∫
V
5.(uϕ)dV = (uϕ)e.ne∆se +(uϕ)w.nw∆sw +(vϕ)n.nn∆sn +(vϕ)s.ns∆ss (25)

∂ϕc

∂ t
∆Vc = (uϕ)e∆y+(uϕ)w∆y+(vϕ)n∆x+(vϕ)s∆x

∂ϕc

∂ t
=

(uϕ)e− (uϕ)w

∆x
+

(vϕ)n− (vϕ)s

∆y
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∂ϕc

∂ t
∆Vc = k5 .5ϕ = k∑ f1, f2, ...5ϕ f .n f ∆S f

=5ϕe.ne∆Se +5ϕw.nw∆Sw +5ϕn.nn∆Sn +5ϕs.ns∆Ss

 (26)

∂ϕc

∂ t
∆x∆y =

∂ϕ

∂x
|e∆y− ∂ϕ

∂x
|w∆y+

∂ϕ

∂y
|n∆x− ∂ϕ

∂y
|s∆x

∂ϕc

∂ t
=

∂ϕ

∂x |e∆y− ∂ϕ

∂x |w∆y
∆x

+

∂ϕ

∂y |n∆x− ∂ϕ

∂y |s∆x

∆y
(27)

The mass conservation equation is,∫
sur f ace

u.nds = ∑
f1, f2,...

∫
si

u.ndsi = 0,

for u = (u,v) ∫
sur f ace

u.nds≈ ue∆y−uw∆y+un∆x−us∆x (28)

The x-directional pressure gradient is,

1
ρ

∫
sur f ace

P.nxds≈ 1
ρ
(Pe∆y−Pw∆y), (29)

the y-directional pressure gradient is,

1
ρ

∫
sur f ace

P.nyds≈ 1
ρ
(Pn∆x−Ps∆x). (30)

4.2.1. Implementation strategy:
We introduced cell-centered indexing such that scalar quantities are placed at the natural cell centers

which are referred to as scalar volumes, also velocities and momentum have their own control volumes
which are centered at the faces of the scalar volumes aligned for structured uniform grid [39, 40, 42,
43, 44].

1. Firstly, the continuity equation (3) can be read as:

ue−uw

∆x
+

un−us

∆y
= 0

ui+1, j−ui, j

∆x
+

ui, j+1−ui, j

∆y
= 0

2. Secondly, x-momentum convective flux in equation (17) can be read as:∮
S

uu.nds≈ (uu)e∆y− (uu)w∆y+(vu)n∆x− (vu)s∆x

ue ≈ 1
2(ui+1, j +ui, j)

uw ≈ 1
2(ui, j +ui−1, j)

un ≈ 1
2(ui, j+1 +ui, j)

us ≈ 1
2(ui, j +ui, j−1)

 &
vn ≈ 1

2(vi−1, j+1 + vi, j+1)

vs ≈ 1
2(vi−1, j + vi, j)

}
(31)

28



3. Thirdly, y-momentum convective flux in equation (17) can be read as:∮
S

vu.nds≈ (uv)e∆y− (uv)w∆y+(vv)n∆x− (vv)s∆x

ve ≈ 1
2(vi, j + vi+1, j)

vw ≈ 1
2(vi, j + vi−1, j+1)

vn ≈ 1
2(vi, j + vi, j+1)

vs ≈ 1
2(vi, j + vi, j−1)

 &
ue ≈ 1

2(ui+1, j +ui+1, j−1)

uw ≈ 1
2(ui, j +ui, j−1)

}
(32)

4. Fourthly, x-directional diffusive flux in equation (17) can be read as:∮
S

∇u.nds≈ ∂u
∂x
|e∆y− ∂u

∂x
|w∆y+

∂u
∂y
|n∆x− ∂u

∂y
|s∆x

∂u
∂x |e ≈

1
∆x(ui+1, j−ui, j)

∂u
∂x |w ≈

1
∆x(ui, j−ui−1, j)

∂u
∂y |n ≈

1
∆y(ui, j+1−ui, j)

∂u
∂y |s ≈

1
∆y(ui, j−ui, j−1)

 (33)

∮
S

∇v.nds≈
(ui+1, j−ui, j−ui, j +ui−1, j)

∆x2 +
(ui, j+1−ui, j−ui, j +ui, j−1)

∆y2

5. Fifthly, y-directional diffusive flux in equation (17) can be read as:∮
S

∇v.nds≈ ∂v
∂x
|e∆y− ∂v

∂x
|w∆y+

∂v
∂y
|n∆x− ∂v

∂y
|s∆x

∂v
∂x |e ≈

1
∆x(vi+1, j− vi, j)

∂v
∂x |w ≈

1
∆x(vi, j− vi−1, j)

∂v
∂y |n ≈

1
∆y(vi, j+1− vi, j)

∂v
∂y |s ≈

1
∆y(vi, j− vi, j−1)

 (34)

∮
S

∇v.nds≈
(vi+1, j− vi, j− vi, j +ui−1, j)

∆x2 +
(vi, j+1− vi, j− vi, j + vi, j−1)

∆y2

6. Second lastly, x-directional pressure gradient in equation (17) can be read as:

1
ρ

∫
sur f ace

P.nxds≈ 1
ρ∆x

(Pi, j−Pi, j−1)

7. lastly, y-directional pressure gradient in equation (17) can be read as:

1
ρ

∫
sur f ace

P.nyds≈ 1
ρ∆y

(Pi, j−Pi, j−1)

4.3. Artificial Compressibility (AC) method
Let us consider the continuity equation in the following way,

1
δ

∂ p
∂ t

+
∂u
∂x

+
∂v
∂y

= 0, (35)

which leads to,

1
δ

pAdvance− pold

dt
+

ue−uw

∆x
+

vn− vs

∆y
= 0. (36)

This method, known as artificial compressibility, uses a relatively straightforward strategy and is
capable of dealing with some dimensionless numbers. A very precise velocity solution can be obtained
using this method [44, 45].

29



5. Analysis

Numerical investigation of unsteady, incompressible, and two-dimensional lid-driven cavity flow
with the aspect ratio A = 1(1m×1m) is being done to understand the effect of viscous heating in both
no-slip and free-slip Neumann boundary conditions in two case studies to characterize the flow field
and temperature distribution with insulated walls. These examples, which feature laminar unsteady
flow and different fluid parameters, are done iteratively.

5.1. Relevance of the grid size and time
The procedure continues until the analysis period, t = 2 s, has been reached (which is longer than

the steady-state criterion). The Prandtl value is set at 6.2 for the grid independence test that is currently
being conducted (pure water). A solid VF (0.1) of nanoparticles related to Copper (Cu) and a Rayleigh
number (Ra) of 105 have been selected as the material. Computational work has been done on two
different grid sizes, namely 30 by 30 and 72 by 72, and both of these grid sizes have been used. The
computations have been done on a grid that is uniform throughout. Figures 2 & 3 show numerical
results at grid sizes (30× 30) & (72× 72) with Ra = 105 for analysis at two different time period 2s
and 20s. It has been decided to take time step dt as 0.001. Figure 2(a) depicts the horizontal component
of velocity with the main vortex, due to top lid velocity at 2m/s while Figure 3(a) represents results
at 20m/s. Also, Figures 2(b) & 3(b) depict the vertical component of velocity with two vortices at
the top corners of the lid. Figures 2(c) & 3(c) depicts the distribution of the u-velocity in the vertical
mid-plane as well as the v-velocity in the horizontal mid-plane. The kinetic energy profile can be
visualized from Figures 2(d) & 3(d). The contour plot of the isotherms exhibits symmetry due to the
bottom wall temperature distribution and vertical wall boundary conditions. The flow is mostly two
counter-rotating circulating cells, regardless of Rayleigh number or solid volume fraction which can be
seen from Figures 2(e), 3(e), 2(b) & 3(b). The kinetic energy profile has been taken into consideration
from the center line in order to examine the outcomes of using different grid sizes and two distinct time
levels, see Figures 2(f) & 3(f).

Figure 2: Depicts a lid-driven cavity model with Ra = 105, grid sizes (30×30), time step dt as 0.001
and top lid velocity is 2m/s.
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Figure 3: Depicts a lid-driven cavity model with Ra = 105, grid sizes (72×72), time step dt as 0.001
and top lid velocity is 20m/s.

5.2. Vorticity stream function solution
An analytical asymptotic solution has been proposed by us for the problem of vorticity, and it is

located close to the cavity’s corners. In addition, using the finite volume technique, we determined a
singularity-free boundary condition for the vorticity at the corners and the walls. Vorticity values at
the wall utilizing either of the two numerical methodologies with the aforementioned detailed 4.2.1 &
4.3, the following expression should be used. The boundary conditions in each of those operations are
affected in the following way: (ϕ,ω) related dimensionless boundary conditions: ψ = 0, for x = 0,1

Transported quantities Equation of Vorticity Energy Equation

Quantity ω Θ

η
Ra

ρn f β f Pr
((1−ϕ)ρ f β f +ϕρsβs)

µn f

ν f ρn f

ε 0
αn f

α f Pr

Table 2: Shows transport system (17) & (21) presentation for different terms.

and 0 ≤ y ≤ 1 as well as for y = 0,1 and 0 ≤ x ≤ 1. Figures 4(b) and 4(c) depict the value of ω and
corresponding streamlines (SL) which is translated in terms of velocity along the x-direction ux which
can be seen from Figure 4(a). While Figures 4(e) and 4(f) depict the value of ψ and corresponding
streamlines (SL) which is translated in terms of velocity along the y-direction Uy which can be seen
from Figure 4(d).

The velocity profiles Ux and Uy from the mid line of cavity at y = 0.005 and x = 0.005 for
various ϕ are presented in Figures 5(b) and 5(c). In point of fact, when Ra are set to 104 and
ϕ = 0%, the greatest values of vertical velocity have a variation of 14.23% [41, 42]. These dis-
crepancies are shown to decrease with an increase in the Rayleigh number. In terms of plotting
the temperature which is distributed, it is possible to see distinct variations in the isotherm con-
tour plot, see Figure 5(e) when compared to the scenario in which ϕ = 0%. When the percent-
age of solid particles in the total volume increases, the variations become more pronounced. Be-
cause of these changes, the presence of nanoparticles has a significant impact, see Figures 5(a,d & f).
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Figure 4: Depicts with Ra = 104, grid sizes (30×30) and ϕ = 0%

Figure 5: Depicts a lid-driven cavity model with Ra = 104, grid sizes (72×72) and ϕ = 2%
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5.3. Significance of ϕ & Ra
Figures 6(a-c) illustrate the distribution of heat transfer that occurs through the hot wall by plot-

ting lines of the energy equation against different values of Rayleigh number Ra and volume fraction
ϕ . Symmetric behavior of temperature is observed with regard to the plane x = 0.005 for each and
every possible combination of Ra & ϕ . The amount of heat that is transferred through the hot wall
is relatively modest when the Rayleigh number is low (Ra = 5× 103) and ϕ = 0%, therefore results
in a minor curvature when x = 0.005 is reached. This curvature is because of the substantially higher
intensity of the cells that rotate in the opposite direction to one another [41, 42, 44]. Because of the
reduction in fluid velocity, the curvature at the center of the figure vanishes when is increased to a
value of 0.1. The maximum amount of heat that can be transferred occurs at a ϕ value of 0.4%, and the
amount of heat that can be transferred is increased [41, 42, 44]. On the curves corresponding to various
values of Rayleigh numbers such as Ra = 5× 104 and Ra = 5× 105, with prominent heat transfer in
the neighborhood of x = 0.025 and x = 0.075 is observed. Because the top lid is moving, the heat
is generated there and is first concentrated in the top right corner. After that, the warmth gradually
spreads to the cavity’s right bottom corner as well as the rest of the space within it. The free-slip
boundary condition, on the other hand, results in a temperature distribution that is less extreme over-
all. In contrast to the no-slip boundary condition, the free-slip boundary condition places additional
constraints on the development of eddies. A comparison of temperature profiles is carried out for a
variety of volume fractions and their respective values. The temperature profiles for both types of slip
boundary conditions follow a similar trend at the point with the greatest value of the stream function,
and the temperatures continue to rise. Hence, the fluid is able to freely slide over the wall or solid
interface, and as a result, there is no possibility of frictional heat being generated at the wall. The
reduced applied velocity on the top lid lowers the temperature profile and reduces the stream function
distribution in the complete lid-driven flow as required by the governing system. The last component
on the right-hand side of the thermal energy equation is significantly related to the stream function,
therefore viscous heating will lower the temperature profile.

In addition to this, it is interesting to note that the steady-state period at the threshold of error =
10−5 for all three instances such as for Ra has been reached for the fluid flow, indicated in Figure, it is
not possible to see a steady-state condition for any of the three examples’ temperature profiles 6(a-c).
Therefore, the temperature profile rises in a quasi-linear manner, despite the fact that the equation (17)
is an elliptic equation. It is possible to extrapolate the temperature profile at some particular position,
or perhaps at any place within the cavity, which will continue to rise.

Figure 6: Depicts results for temperature with different values of Ra and ϕ .
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6. Conclusion

The enhancement of heat transmission in a two-dimensional enclosure that is filled with nanofluids
is investigated using computational methods in this study. A new artificial compressibility formulation
was developed, and the effect of a thermal boundary condition was examined, for a range of Rayleigh
numbers Ra and nanoparticle volume fractions ϕ . Because of the symmetry criterion that is enforced
on the boundary of the bottom wall, the flow and temperature fields are symmetrical in the vicinity of
the central plane of the enclosure. Following is a list of the primary inferences that can be derived from
the outcomes of this work:

• New artificial compressibility concept matches prior studies. Different Rayleigh numbers vali-
dated our numerical coding [45].

• As the top lid moves, a constant heat flux is generated and supplied continually, resulting in
a rising temperature profile in three of the cases. The temperature profiles of these test cases
will continue to rise if the iteration time is increased to any other period. Because of this, a
meteorite’s surface temperature keeps rising as it falls through space, despite the fact that the
meteorite’s contact with the air during its fall generates only a negligible amount of heat due to
friction or viscous heating [25, 42, 45].

• In addition to a lower Ra number and reduced thermal diffusivity, the free-slip effect of the fluid
flow can also contribute to more uniform temperatures.

• A higher value of the Prandtl number (Pr), can lead to a more uniform temperature distribution
within the cavity model.

• Despite the fact that the vorticity stream function technique is straightforward and adequate for
explaining the Neumann boundary and the free-slip effect, this method can be used for problems
with basic/complex geometry [36, 41, 42, 45].

• A study comparing the effects of nanoparticles with varying volume fraction and Rayleigh num-
bers Ra show that the nanoparticles significantly boost the heat transfer rate. Also, the concen-
tration of copper (Cu) nanoparticles and the flow of the nanofluid both improve. This research
will soon be expanded to include additional types of base fluids and nanoparticles, as well as
additional sorts of geometry investigations [29, 32, 41, 44].

• Because the free-slip effect is considered to operate as a lubricant, it will cause the fluid to flow
quicker than it would with the no-slip boundary, but the temperature distribution will be lower
with the free-slip effect than it would be with the no-slip boundary [29, 32, 41, 45].

• Mathematical formulations of continuity, momentum, and boundary conditions regulate the
physical design. Finite volume for a staggered grid combined with an artificial compressibil-
ity approach is used to solve the incompressible Navier Stokes equations for two-dimensional
unsteady fluid flow in a square cavity. In all situations, a detailed analysis is done and con-
tour plots are shown while line graphs show velocity components. Analysis of kinetic energy
is performed. The results described in this study should benefit future research on fluid flow in
industrial enclosures.
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