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Abstract:
This work investigates a fractional-order food chain model based on the Caputo operator, taking

into account resource availability, competition, and predation. The dynamics of the food chain are bet-
ter represented using fractional calculus, which takes into account long-range interactions and previous
dependency. Analytical and numerical simulations reveal information about the resilience, persistence,
and stability of biological communities under fractional order dynamics. The model includes a three-
species food chain, as well as environmental contamination. We begin by confirming the model’s
uniqueness, nonnegativity, and boundedness. We also examine numerous conditions for the presence
of equilibrium and local stability. Second, a controller is proposed, and the global stability of the
positive equilibrium point is investigated using the Lyapunov method. The proposed model solution
was estimated using the fractional iterative technique, and numerical simulations were carried out to
validate the theoretical results.

Keywords: Food chain model; Caputo fractional operator; Positivity and boundedness; Local stability;
Chaos and error analysis.

1. Introduction

Environmental pollution is a global threat due to human activities like transportation, agriculture,
urbanization, and industrialization. It affects ecosystem dynamics and biodiversity, with a focus on
food chains and food webs. Understanding food chains helps depict the transfer of nutrients and
energy across ecosystems, highlighting the interdependence of organisms. Pollution can disrupt food
networks, disrupting survival, reproduction, and health. Population dynamics, including complex inter-
specific relationships like mutualism, parasitism, competition, and predation, are key areas of biomath-
ematics study. Contaminants in land, water, and air can harm the biological chain, disrupt ecosystems,
and lower biodiversity. Pollution negatively impacts wildlife populations, particularly marine animals
and turtles. Water sources’ turbidity ranges from 9.0 to 171.5, and air pollution negatively impacts
wildlife health.

Researchers, in [1], investigated DNA methylation patterns and respiratory health of eastern gray
squirrel populations in North Wales, Sussex, and London, focusing on ecological research relation-
ships. Population dynamics are influenced by interactions in ecosystems, such as food chains and



webs. Mathematical models using differential equations characterize these interactions, providing a
foundation for ecological interaction networks. Research shows chaotic interactions between species
in food chain, population, and predator-prey models, prompting scientists worldwide to use mathemat-
ical models to study ecological settings [2]. Li and Liu [3] investigated two biological species in a
predator-prey paradigm, concentrating on how they moved in relation to the concentration of chemi-
cals released by the other species. They imposed particular requirements on the initial data and framed
the issue as a linked system. Garai et al. [4] investigated how predatory danger and prey protection
affected predator-prey relationships., examining transition and chaos mechanisms and periodic struc-
tures in the ecological model. Researchers, in [5], studied a predator-prey biological system involving
two species, revealing that over-predation of juveniles leads to system instability and supercritical Hoof
bifurcations. In a predator-prey fisheries model, Sharif et al. [6] investigated the practice of fishing
and developmental opportunities, analyzing homeostatic states and bifurcation results using numerical
simulation analysis. Jiao et al. [7] developed a predator-prey model with impulses, analyzing its global
asymptotic stability. The analysis revealed a continuous prey extinction boundary cycle solution, en-
riching population ecology and management. Das et al. [8] developed a predator-prey model to study
natural interactions, including felt dread, interspecific rivalry, and delayed pregnancy in prey species.
Pollution, particularly carbon dioxide emissions, significantly contributes to climate change, altering
weather patterns and potentially affecting animal health. Reducing pollution is crucial for human sur-
vival, leading to increased interest in pollution management. To examine sulfur dioxide emissions and
the existence of forests in various areas, Guo et al. [9] created an ecological model using the DPSIR
structure, and [10] created a multiline atmospheric pollution prediction system with precise features.

In order to better explain difficult situations, fractional differential equationswhich include deriva-
tives of unknown functions of fractional ordercan be used to describe problems in real life by offering
comprehensive information (see [11][20]). It is more accurate and reliable to depict the actual dynamic
process using fractional differential equations, as most mathematical models of biology have long-term
memory. Fractional rabies and predator-prey models were put forth by [21], who also examined the
stability, numerical solutions, and equilibrium points of each. The stability of a fractional-order sys-
tem was investigated by the authors in [22] using the Lyapunov direct method, which significantly
advanced methods for analyzing the systems’ stability. The authors of [23] examined the dynamic
behavior of the Hastings-Powell food chain system and extended it to fractional order. Using arbitrar-
ily testing, contact monitoring, the use of condoms control parameters, and anti-retro-viral treatment
(ART) to manage the epidemic, the authors of [24] created a fractional model for HIV/AIDS trans-
mission dynamics. They discovered that ART treatment control for those with HIV who had been
detected and monitoring their contacts greatly decreased the number of people who were still unde-
tected. By simulating COVID-19 dynamics in diabetic patients, the model [25] offers comprehensive
insights into the course of the disease. The progression of sickness is analyzed using fractional opera-
tors. Higher fatality rates among diabetic patients are revealed by the simulation, suggesting that these
people require extra care. A SEACTR model for viral infection with hepatitis B, including treatment
and vaccination controls, was proposed by Zehra et al. [26]. Dynamic behavior for constant controls
was verified using the HBV model with a fractional operator. Lower fractional orders were found to
improve HBV control in all models, and the study demonstrated good stability accuracy with smaller
fractional orders. In order to improve accuracy and comprehension of the complexities of tuberculosis,
a fractional operator was used in the development of a fractal-fractional model in [27] to explore pop-
ulation dynamics of the illness. To demonstrate how decreased forestry resources affect toxin activity
and fire caused by humans, researchers [28] have created a nonlinear mathematical model using an
improved ABC-fractional-order system. Additional research on fractional-order disease modeling can
be found in [29, 30, 31]. Researchers have found that the system experiences bifurcation at a positive
fixed point, and to mitigate this chaos, they employ various control strategies [32, 33].

This study investigates the application of a fractional model of species systems to accurately ex-
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plain the dynamic behavior of multi-species food-chain ecosystems. Despite substantial research into
biological models, omnivores are frequently disregarded in traditional models. The study looks at
a food chain model in which herbivores, omnivores, and carnivores live while fully acknowledging
their presence. This method is critical for comprehending the complexities of multispecies food-chain
ecosystems. This work converts an integer-order food-chain system to fractional-order form, defining
its order range, analyzing its dynamics with parameter value modification, and calculating its stability
margin. It also investigates the dynamics of the resulting ecosystem. Next section covers some basic
terms of fractional calculus used in this article. Section 3 suggests a fractional food chain model with
a Holling type-II functional response based on these works. The existence, uniqueness, nonnegativity,
and boundedness of the solution are all demonstrated in this study. The model’s equilibrium point is
computed and its local stability is established in the section 4. In the section 5, the suggested system of
equations is subjected to a reliable numerical approach. Section 6 uses simulations to confirm the new
model’s validity by forecasting the food chain’s dynamics. The conclusion is given in the section 7.

2. Preliminaries

Definition 2.1. [16, 20, 40] For fractional order β > 0, the integral of a continuous function f ,R+→R
is given as:

Iβ

t f (t) =
1

Γ(β )

∫ t

0
(t− τ)β−1 f (τ)dτ, t > 0, β ∈ (0,1). (1)

Definition 2.2. [16, 20, 40] The definition of a function f ,R+→ R’s Caputo fractional derivative of
order β is

Dβ

t f (t) =
1

Γ(n−β )

∫ t

0

f n(τ)

(t− τ)β+1−n
dτ, (n−1 < β < n), n ∈ R+. (2)

At n = 1, we have

Dβ

t f (t) =
1

Γ(1−β )

∫ t

0

f ′(τ)
(t− τ)β

dτ.

3. Model Formulation

In order to comprehend basic processes and preserve a sustainable environment, we investigate
predator-prey interactions in ecosystems. Although functional responses are used in prey-predator and
food chain models, the amount of time predators spend processing food is frequently ignored. In order
to solve this problem and enhance prey capture, type II functional responses-which include a rectangu-
lar hyperbola-take into account predators’ ability to absorb food. In 1889, H. Older and J. Hadamard
created the general theory of convex functions, which is a useful tool for analyzing difficulties. Con-
vex function-based inequalities are effective in many areas of mathematics and have drawn interest in
literature. The model emphasizes the extensive effects that environmental contamination has on the
ecosystem as a whole [34].

The population sizes are given as follows:

• x(t): Prey population;

• y(t): Intermediate predator predators;

• z(t): Top predators.

Assumptions:
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• We consider that logistical growth leads to a prey population.

• Let K represent the prey species’ carrying capacity and r represent its intrinsic growth rate.

• To simulate the relationship between prey and intermediate predators, we have adapted the
Holling-IV functional response [35].

• These three species are thought to reside in environments that are consistently polluted.

• Animal deaths can occur as a result of environmental pollution. Prey, intermediate predators,
and top predators have pollution-related mortality rates of px, py, and pz, in that order.

Biological systems can benefit from fractional order differential equations since they are more realistic
because they can take into account local conditions and history. The prey predator food chain model is
one example of the complex and nonlinear ecosystems that researchers are concentrating on using these
models for. In an effort to increase the accuracy of their findings, they are also developing a number
of ecological models with fractional order (see [36, 37, 38, 39]). Thus, we derive the following model
based on the discussion above:

C
0 Dβ

t x(t) = rx
(

1− x
K

)
− cxxy

ax2 + s
− pxx,

C
0 Dβ

t y(t) =
cyxy

ax2 + s
· 1+ cy

1+ cy+wz
− czyz

y+ t
−dyy− pyy,

C
0 Dβ

t z(t) =
cuyz
y+ t

−dzz− pzz, (3)

where the initial conditions are given as

x(0), y(0), z(0)≥ 0. (4)

Table 1: Model parameters

Parameter Description
r Intrinsic growth rate.
K Carrying capacity.
cx Attack rate by intermediate predators
cy Net gain of intermediate predators
px Pollution-related death rate.
cz Attack rate by apex predators.
dy Natural death rate.
py Pollution-related death rate.
cu Net gain over intermediate predators.
dz Natural death rate.
pz Pollution-related death rate.

3.1. Positivity and Uniqueness
Using a norm as a starting point, this section investigates constraints that guarantee positive, re-

stricted, and well-posed solutions for the suggested model, assuming pertinent real-world conditions.
The norm is

‖z‖∞ = supt∈Dz
|z(t)|.
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We find

C
0 Dβ

t x(t) = rx
(

1− x
K

)
− cxxy

ax2 + s
− pxx,

≥ −(cx|y|+ px)x,
≥ −(cxsupt∈Dy|y|+ px)x,

= −(cx‖y‖∞ + px)x,

⇒ x(t)≥ x(0) e−(cx‖y‖∞+px)t ,∀t ≥ 0. (5)

We can also have

y(t) ≥ y(0) e−(cz‖z‖∞+dy+py)t ,∀t ≥ 0, (6)

z(t) ≥ z(0) e−(cu‖y‖∞+dz+pz)t ,∀t ≥ 0. (7)

Now, we examine that system solutions are limited in feasible region R3
+. On (0,∞), the system

solutions are unique given to the initial conditions. We observe

• x = 0 suggests that C
0 Dβ

t x(t) = 0,

• y = 0 suggests that C
0 Dβ

t y(t) = 0,

• z = 0 suggests that C
0 Dβ

t z(t) = 0,

The domain R3
+ is positive invariant, and each compartment has a unique solution, as seen by the above

solutions’ inability to escape the hyperplane.

4. Analyzing Equilibria and Local Stability

To obtain the Equilibrium points we let

C
0 Dβ

t x=C
0 Dβ

t y=C
0 Dβ

t z=0,

and solve the system of equations simultaneously. Then, we get trivial and non trivial solutions which
are as under;

E1 = (x,y,z) = (0,0,0).

E2 = (x,y,z) = (
k(r− px)

r
,0,0).

We now think about their stability. At the equilibrium point E1, the Jacobian matrix is

J (E1) =


∂ f1(x,y,z)

∂x
∂ f1(x,y,z)

∂y
∂ f1(x,y,z)

∂ z ,
∂ f2(x,y,z)

∂x
∂ f2(x,y,z)

∂y
∂ f2(x,y,z)

∂ z ,
∂ f3(x,y,z)

∂x
∂ f3(x,y,z)

∂y
∂ f3(x,y,z)

∂ z .

 (8)
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For Function f1(x,y,z):

∂

∂x
[− cxyx

ax2 + s
+ rx ·

(
1− x

K

)
− pxx] =−cxy · ∂

∂x

[
x

ax2 + s

]
+ r · ∂

∂x

[
x ·
(

1− x
K

)]
− px ·

∂

∂x
[x],

=−
cxy ·

(
1
(
ax2 + s

)
−
(
a · d

dx

[
x2]+ d

dx [s]
)

x
)

(ax2 + s)2 + r ·
(

1
(

1− x
K

)
+ x ·

(
d
dx

[1]− 1
K
· d

dx
[x]
))
− px,

=−
cxy ·

(
ax2− (a ·2x+0)x+ s

)
(ax2 + s)2 + r ·

(
x ·
(

0− 1
K

)
− x

K
+1
)
− px,

=−
cxy ·

(
s−ax2)

(ax2 + s)2 + r ·
(

1− 2x
K

)
− px,

=− cxy
ax2 + s

+
2acxyx2

(ax2 + s)2 + r ·
(

1− x
K

)
− rx

K
− px.

(9)

∂

∂y

[
− cxxy

ax2 + s
+ rx ·

(
1− x

k

)
− pxx

]
=− cxx

ax2 + s
· ∂

∂y
[y]+

∂

∂y

[
rx ·
(

1− x
k

)]
+

∂

∂y
[−pxx] ,

=− 1cxx
ax2 + s

+0+0,=− cxx
ax2 + s

.

(10)

∂

∂ z

[
− cxxy

ax2 + s
+ rx ·

(
1− x

k

)
− pxx

]
=

∂

∂ z

[
− cxxy

ax2 + s

]
+

∂

∂ z

[
rx ·
(

1− x
k

)]
+

∂

∂ z
[−pxx] ,

= 0+0+0 = 0.
(11)

For Function f2(x,y,z):

∂

∂x

[
cyy · (cy+1)x

(wz+ cy+1)(ax2 + s)
− czyz

y+ t
− pyy−dyy

]
=

cyy · (cy+1)
wz+ cy+1

· ∂

∂x

[
x

ax2 + s

]
+

∂

∂x

[
− czyz

y+ t

]
+

∂

∂x

[
−pyy

]
+

∂

∂x

[
−dyy

]
,

=

∂

∂x [x]·(ax2+s)−x· ∂

∂x [ax2+s]

(ax2+s)
2 cyy · (cy+1)

wz+ cy+1
+0+0+0,

=
cyy · (cy+1)

(
1
(
ax2 + s

)
−
(

a · ∂

∂x

[
x2]+ ∂

∂x [s]
)

x
)

(wz+ cy+1)(ax2 + s)2 ,

=
cyy · (cy+1)

(
ax2− (a ·2x+0)x+ s

)
(wz+ cy+1)(ax2 + s)2 ,

=
cyy · (cy+1)

(
s−ax2)

(wz+ cy+1)(ax2 + s)2 .

(12)
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c
∂

∂y

[ cyxy · (cy+1)
(ax2 + s)(cy+wz+1)

− cxzy
y+ t

− pyy−dyy
]

=
cyx

ax2 + s
· d

dy

[
y · (cy+1)
cy+wz+1

]
− czz ·

∂

∂y

[
y

y+ t

]
− py ·

∂

∂y
[y]−dy ·

∂

∂y
[y],

=

∂

∂y

[
y·(cy+1)·(cy+wz+1)−y·(cy+1)· ∂

∂y [cy+wz+1]

(cy+wz+1)2 cyx

ax2 + s
− czz ·

∂

∂y [y] · (y+ t)− y · ∂

∂y [y+ t]

(y+ t)2 − py ·1−dy ·1,

=− cztz
(y+ t)2 +

((y · (c ·1+0)+ cy+1)(cy+wz+1)− cy · (cy+1))cyx
(ax2 + s)(cy+wz+1)2 − py−dy,

=− cztz
(y+ t)2 +

cyx · ((cy+wz+1)(2cy+1)− cy · (cy+1))
(ax2 + s)(cy+wz+1)2 − py−dy.

(13)

∂

∂ z

[ cyxy · (cy+1)
(ax2 + s)(wz+ cy+1)

− czyz
y+ t

− pyy−dyy
]

=
cyxy · (cy+1)

ax2 + s
· ∂

∂ z

[
1

wz+ cy+1

]
− czy

y+ t
· ∂

∂ z
[z]+

∂

∂ z

[
−pyy

]
+

∂

∂ z

[
−dyy

]
,

=−

∂

∂ z [wz+cy+1]
(wz+cy+1)2 cyxy · (cy+1)

ax2 + s
− 1czy

y+ t
+0+0,

=−

(
w · ∂

∂ z [z]+
∂

∂ z [cy]+ ∂

∂ z [1]
)

cyxy · (cy+1)

(ax2 + s)(wz+ cy+1)2 − czy
y+ t

,

=−
(w ·1+0+0)cyxy · (cy+1)
(ax2 + s)(wz+ cy+1)2 − czy

y+ t
,

=−
cywxy · (cy+1)

(ax2 + s)(wz+ cy+1)2 −
czy

y+ t
.

(14)

For Function f3(x,y,z):

∂

∂x

[
cuyz
y+ t

− pzz−dzz
]
=

∂

∂x

[
cuyz
y+ t

]
+

∂

∂x
[−pzz]+

∂

∂x
[−dzz] ,

= 0+0+0,= 0.
(15)

∂

∂y

[
cuzy
y+ t

− pzz−dzz
]
= cuz · ∂

∂y

[
y

y+ t

]
+

∂

∂y
[−pzz]+

∂

∂y
[−dzz] ,

= cuz ·
∂

∂y [y] · (y+ t)− y · ∂

∂y [y+ t]

(y+ t)2 +0+0,

=
cuz ·

(
1(y+ t)−

(
∂

∂y [y]+
∂

∂y [t]
)

y
)

(y+ t)2 ,

=
cuz · (−(1+0)y+ y+ t)

(y+ t)2 ,

=
cutz

(y+ t)2 .

(16)
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∂

∂ z

[
cuyz
y+ t

− pzz−dzz
]
=

cuy
y+ t

· ∂

∂ z
[z]− pz ·

∂

∂ z
[z]−dz ·

∂

∂ z
[z],

=
1cuy
y+ t

− pz ·1−dz ·1,

=
cuy

y+ t
− pz−dz.

(17)

By using trivial equilibrium points (E1) = (x,y,z) = (0,0,0) in all above determined derivatives, we
finally get in Jacobian at E1 as:

J (E1) =

 r−Px 0 0
0 −dy−Py 0
0 0 −dz−Pz

 . (18)

|J (E1)−λ I|= 0 ⇒

 r− px 0 0
0 −dy− py 0
0 0 −dz− pz

−λ

 1 0 0
0 1 0
0 0 1

= 0. (19)

=

∣∣∣∣∣∣
−λ1 +(r−Px) 0 0

0 −dy−Py−λ2 0
0 0 −λ3−dz−Pz

∣∣∣∣∣∣= 0. (20)

It is obvious that
λ2 < 0 and λ3 < 0.

Thus,
If λ1 < 0 ⇒ r−Px < 0⇒ r < Px. (21)

or Px > r. Then, we can conclude that the trivial equilibrium E1 = (0,0,0) is asymptotically stable.
Now,By using non-trivial equilibrium points E2 = (x,y,z) =

(
k(r−px)

r ,0,0
)

in all above pre determined
derivatives, we get in Jacobian at E2 as:

J (E2) =


Px− r cxk(Px−r)

r
(

ak2(Px−r)2

r2 +S
) 0

0 cyk(r−Px)

r
(

ak2(r−Px)2

r2 +S
) −dy−Py 0

0 0 −dz−Pz

 . (22)

|J (E2)−λ I|= 0 ⇒


Px− r cxk(Px−r)

r
(

ak2(Px−r)2

r2 +S
) 0

0 cyk(r−Px)

r
(

ak2(r−Px)2

r2 +s
) 0

0 0 −dz−Pz

−λ

 1 0 0
0 1 0
0 0 1

= 0. (23)


−λ1 +(Px− r) cxk(Px−r)

r
(

ak2(Px−r)
r2 +S

) 0

0 −λ2 +
cyk(r−Px)

r

(
(k2(r−Px)2)

r2 +S

) −dy−Py 0

0 0 −λ +(−dy−Py)

= 0. (24)
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−λ1 +(Px− r) = 0.

−λ2 +
cyk (r−Px)

r
(

ak2(r−Px)
2

r2 +S
) −dy−Py = 0.

−λ3 +(dz−Pz) = 0.

(25)

For the E2, it is evident that λ1 < 0 and λ3 =−dz−P2 < 0, E2 is thus asymptotically stable when

Cy k (r−Px)

r
(

ak2(r−Px)
2

r2 +S
) < dy +Py.

4.1. Chaos Control
The controlled systems with the functions v1(t), v2(t), and v3(t) are as follows:

dβ x
dtβ

= rx
(
1− x

k

)
− cxxy

ax2+s −Pxx+ v1(t),
dβ y
dtβ

=
cyxy

ax2+s ·
1+cy

1+cy+ωz −
czyz
y+1 −dyy−Pyy+ v2(t),

dβ z
dtβ

= cuyz
y+t −dzz−Pzz+ v3(t).

(26)

where (x̄, ȳ, z̄) represent system’s solutions. Consider the following error functions:

q1 = x− x̄, q2 = y− ȳ &q3 = z− z̄.

Thus, we can write

dβ q1

dtβ
= rx

(
1− x

k

)
− cxxy

ax2 + s
−Pxx+ v1(t)− rx̄

(
1− x̄

k

)
− cxx̄ȳ

ax̄2 + s
−Pxx̄,

dβ q2

dtβ
=

cyxy
ax2 + s

· 1+ cy
1+ cy+wz

− czyz
y+1

−dyy−Pyy+ v2(t)−
cyx̄ȳ

ax̄2 + s
· 1+ cȳ

1+ cȳ+ω z̄
− cxȳz̄

ȳ+1
−dyȳ− pyȳ,

dβ q3

dtβ
=

cuyz
y+ t

−dzz−Pzz+ v3(t)−
cuȳz̄
ȳ+ t

−dzz̄−Pzz̄.

(27)

Theorem 4.1. If the following control functions are taken into account, the error system approaches
zero:

v1(t) =−q1−
[
rx
(
1− x

k

)
− cxxy

ax2+s − pxx
]
+
[
rx̄
(
1− x̄

k

)
− cxx̄ȳ

ax̄2+s − pxx̄
]
,

v2(t) =−
[ cyxy

ax2+s ·
1+cy

1+cy+wz −
czyz
y+1 −dyy−Pyy

]
+
[ cyx̄ȳ

ax̄2+s ·
1+cȳ

1+cȳ+ω z̄ −
cxȳz̄
ȳ+1 −dyȳ−Pyȳ

]
,

v3(t) =−
[cuyz

y+t −dzz− pzz
]
+
[cuȳz̄

ȳ+t −dzz̄−Pzz̄
]
.

(28)

Proof. The following Lyapunov function can be defined H = 1
2

(
q2

1 +q2
2 +q2

3
)
. According to the defini-

tion of a fractional derivative, taking the fractional derivative w.r.t H results in the following equations.

dβ H
dtβ
≤ q1

dβ q1

dtβ
+q2

dβ q2

dtβ
+q3

dβ q3

dtβ
. (29)

Hence, the following equation results in:

dβ H
dtβ
≤−q2

1−δ1q2
2−δ2q2

3 < 0. (30)
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5. Numerical scheme

The food-chain problem can be discretized using a numerical technique [41] based on Newton
polynomial interpolation. Let the system is as follows:

C
0 Dβ

t x(t) = K1(t,ω(t)),
C
0 Dβ

t y(t) = K2(t,ω(t)),
C
0 Dβ

t z(t) = K3(t,ω(t)). (31)

where ω = (x,y,z), and

K1(t,ω(t)) = rx
(

1− x
K

)
− cxxy

ax2 + s
− pxx,

K2(t,ω(t)) =
cyxy

ax2 + s
· 1+ cy

1+ cy+wz
− czyz

y+ t
−dyy− pyy,

K3(t,ω(t)) =
cuyz
y+ t

−dzz− pzz. (32)

When, we generalize the system as:{
C
0 Dβ

t ω(t) = Ki(t,ω(t)), i = (1,2,3),
ω(0) = ω0,

(33)

Rearrange in the following way:

ω(t)−ω(0) =
1−β

Γ(β )

∫ t

0
K1(τ,ω(τ))(t− τ)β−1dτ. (34)

We can write the following at point tt+1 = (t +1)∆t:

ω (tl+1) = ω(0)+
1−β

Γ(β )

l

∑
`=2

∫ t`+1

t`
K1(τ,ω(τ))(tl+1− τ)β−1 dτ. (35)

By substituting Newton polynomial, we obtain

ω1+1 = ω0 +
1−β

Γ(β ) ∑
l
`=2
∫ t`+1

t`


K1
(
t`−2,ω

`−2)
+

K1(t`−1,ω
`−1)−K1(t`−2,ω

`−2)
∆t (τ− t`−2)

+
K1(t`,ω`)−2K1(t`−1,ω

`−1)(K1(t`−2,ω
`−2))

2(∆t)2

×(τ− t`−2)(τ− t`−1)

× (t`+1− τ)l−1 dτ.

(36)
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As a result of various calculations, we can see the following strategy:

ω
l+1 = ω0 +

(∆t)β

Γ(β +1)

l

∑
`=2

K1

(
t`−2,ω

`−2
)
×
[
(t− `+1)β − (t− `)β

]
+

(∆t)β

Γ(β +2)

l

∑
`=2

[
K1

(
t`−1,ω

`−1
)
−K1

(
t`−2,ω

`−2
)]

×
[
(t− `+1)β (t− `+3+2β )

−(t− `)β (t− `+3+3β )

]
+

(∆t)β

2Γ(β +3)

l

∑
`=2

[
K1
(
t`,ω`

)
−2K1

(
t`−1,ω

`−1)
+K1

(
t`−2,ω

`−2) ]

×


(l− `+1)β


2(t− `)2

+(3β +10)(t− `)
+2β 2 +9β +12


−(t− `)β


2(l− `)2

+5(β +2)(t− `)
+6(β 2 +3β +2)



 .

(37)

6. Results and Discussions

This part provides validation for the numerical scheme presented in the previous section. To vali-
date and authenticate the results, the food chain model under the Caputo operator is numerically simu-
lated using MATLAB, which is also utilized to simulate the analytical results. For the evolution of the
proposed food web model, some initial conditions and fractional order β are provided. Parameters’
values are assumed and adjusted accordingly. The three compartments of the suggested food-chain
model are visually depicted in numerical simulations on various fractional orders (β ).

• The x(t) compartment simulation, depicted in Figure (1), reveals dynamic variations at differ-
ent fractional orders. Moderate variations occur with fractional order 0.85, indicating slower
response to input stimuli. As fractional order approaches 0.95, behavior intensifies, possibly
causing faster reactions. Larger fractional orders may amplify oscillations or accelerate system
reactions. Initial conditions and transient behaviors significantly impact trajectory and steady-
state responses, highlighting the impact of initial points and transient behaviors.

• According to Figure (2), the compartment y(t) can be simulated to understand its behavior under
different fractional orders and starting conditions. At fractional order 0.6, y(t) responds slowly,
while at fractional order 0.95, it behaves more dynamically. The change in initial conditions
from (0.6, 3.1, 5) to (4, 10, 3.2) highlights the impact of starting conditions on y(t)’s initial
behavior and steady-state response.

• The simulation findings reveal that compartment z(t) behaves differently under different frac-
tional orders and conditions, as shown in Figure (3). Higher fractional orders, like 0.95, produce
more noticeable oscillations or dynamic behavior, while lower fractional orders, like 0.85, pro-
vide sluggish dynamics. The change in initial conditions from 0.6 to 3.2 demonstrates how
simulation’s beginning points affect z(t)’s transient behavior and final steady-state response.

• The fractional order significantly influences system behavior, with higher orders indicating faster
or more dynamic responses. The initial conditions chosen significantly influence the final steady-
state response and transient behavior of all three compartments.

• Because it is non-local and simultaneously examines fractional operator and fractal dimen-
sion, the Caputo derivative performs better than classical derivatives. Over longer time periods,
fractional-order model solutions exhibit a slower rise and decrease.
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Figure 1: Simulation of x(t) at different β values and different initial conditions
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Figure 2: Simulation of y(t) at different β values and different initial conditions
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Figure 3: Simulation of z(t) at different β values and different initial conditions

Comprehending these dynamics is essential for improving strategies and guaranteeing reliable op-
eration in diverse settings. Additionally, fractional order dynamics must be taken into account while

50



modeling and controlling tasks in order to appropriately depict system behavior. Researchers and prac-
titioners can change β values to model a variety of events, from complicated non-linear dynamics to
exponential decay.

7. Conclusion

This paper examines equilibrium points and stability features in a three-species Caputo fractional-
order food chain model. It demonstrated the boundedness of solutions and validated the existence
of unique solutions. The study focused on chaos management techniques and aimed to control and
stabilize chaotic processes within a system using numerical methods and graphical representations,
providing informative visualizations. The approach provides information on the prey-predator food
chain in an ecosystem by demonstrating stable conditions for suggested species on numerous frac-
tional orders (β ). Stable conditions for species on various fractional orders and fractal dimensions are
provided by the intricate geometrical analysis. Each species’ reliance on its surroundings is depicted
graphically, exposing chaotic behavior. Because quantities are displayed in spectral format, behavior
between 0 and 1 can be examined. Among other aspects, the dynamic analysis of time-delay fractional-
order systems and control methods need further investigation. Using numerical simulations and theory
analysis, the stability margin of a regulated fractional-order ecosystem is found.
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