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Abstract: Skin sores (impetigo) are a frequent and contagious skin infection in young children, caus-
ing blisters and ulcers. It is usually not hazardous and resolves within a week of treatment or a few
weeks if no treatment is used. Treatment is commonly recommended since it can shorten the length
of the condition and reduce the risk of the virus spreading to others. We developed and tested a non-
linear hybrid fractional order model to investigate skin sores infection and the transmission dynamics.
The study examines the mathematical properties of the suggested model, such as the feasible region,
equilibrium points, basic reproduction number, and existence of the system’s unique solutions using
Banach fixed-point theory. It also uses the appropriate lyapunov function to examine the stability
of equilibrium states. This work gives a thorough examination of several hybrid fractional operators
and numerically simulates the suggested skin sores system using the Laplace-Adomian decomposition
approach, demonstrating its efficacy in simulating theoretical scenarios. This research advances our
knowledge of the mechanisms underlying disease transmission by taking into account fractional-order
dynamics and a variety of routes, offering suggestions for better disease management and control.

Keywords: Constant Proportional(CP) operator, Impetigo (skin sores); Strength number; Hilfer Gen-
eralized Proportional

1. Introduction

Impetigo (or Skin Sores) is the most prevalent and contagious skin infection that usually afflicts
infants and young children. Bacteria that infect the outer layers of the pores and skin, generally Staphy-
lococcus aureus or Streptococcus pyogenic, are the cause of impetigo[1]. It usually starts as red, itchy
sores that scab over and, for some days, ooze clean fluid or pus. The sore then starts to crust up and
turn yellow or "honey-colored,” and it has treatment options without leaving a scar. Impetigo can have
an effect on the skin everywhere on the body, although it most often affects the vicinity across the lips,
fingers, and forearms, as well as the diaper vicinity in small kids. Impetigo comes in three varieties:
The most common form of impetigo in adults is non-bullous impetigo. Thick crusts with a honey tint
are the result. Bullous impetigo results in significant skin blistering. Ecthyma, a particularly severe
kind that regularly results from impetigo that is left untreated, results in ulcerative infections that pen-
etrate the deeper skin layers [2]. Impetigo can affect everyone, but it most often affects youngsters,



specifically those between the ages of 2 and 14. Impetigo is more common and regularly occurs in
underdeveloped countries and in sections of industrialised international locations with lower earnings.
In step with the latest estimates, impetigo currently affects everywhere between 111 million kids in
growing nations and 140 million human beings globally [3].

Figure 1: Skin Sores or blisters can develop anywhere, but are most common in exposed areas.

Mathematical modeling and evaluation are crucial to the study of infectious contamination epidemi-
ology. In their discussion of the potential of mathematical modeling to improve our comprehension
of skin illness, Tanaka and Ono [4] emphasized the necessity of close ties between statistical analysis,
mathematical modeling, and experiments in order to improve skin research in the postgenomic era.
Anissimov [5] assessed the suitability of two kinds of mathematical models for assessing the toxicity
of pores and skin. The mathematical models developed by Nakaoka et al. [6] provide a thorough
framework to describe the interplay between bacterial species as an environmental element and host
immune responses at the dermis. To determine the strength of exposure and productive period of skin
sores in isolated Australian communities, Lydeamore et al. [7] created a stochastic variant of the SIS
model. Saidalieva et al. [8] used well-diagnosed data and theoretical viewpoints from the disciplines
of biology, biophysics, and law to examine the regulatory mechanisms and dynamics of skin cancer.
Zhao et al. [9] proposed a co-contamination of Buruli ulcer and cholera to analyze the most efficient
strategy to containing the spread of both illnesses using a mathematical model that safeguarded five
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capability controls. In their mathematical model, Greugny et al. [10] used opportunistic infections and
pores and skin commensals to examine the mechanisms driving one species’ dominance over the other.
A mathematical model of the SIRS type was created by Parvin et al. [11] to illustrate the effects of UV
light on pores and skin cancer.

The idea of fractional derivatives is introduced in fractional calculus, an extension of classical
calculus that greatly improves our understanding of a variety of phenomena [12, 13, 14, 15]. Be-
cause fractional calculus, as opposed to integer order approaches, may include memory and heredity
functions in epidemic frameworks, it is becoming more and more popular. Since many students have
created non-integer models for different diseases, showcasing its potential for modeling complicated
systems [16, 17, 18, 19], this method is essential for comprehending how diseases propagate. In [20],
the most popular maximum-order fractional-order differential operators were applied in three excep-
tional ways to examine an epidemiological version related to the chickenpox, a contaminant typically
found in youngsters. In [21], a fractional-order model was developed to comprehend the transmission
and management of foot-and-mouth disease. It covers quarantine for diseased animals and immuniza-
tion plans for vulnerable animals. The model, which was validated using MATLAB, shows that while
animal isolation and vaccination are essential for managing the disease at specific transmission lev-
els, they might not be enough if transmission above a threshold. Using Atangana-Baleanu fractional
derivatives, Samuel Okyere and Joseph Ackora-Prah [22] investigated the transmission dynamics of
monkeypox and found that these derivatives had a major impact on community dynamics. In order to
investigate mumps-induced hearing loss in children, Nisar et al. [23] created a hybrid fractional order
system that performs better than the integer-order derivative while retaining the system memory effect.
Using the Caputo-fractional derivative, P. Bedi et al. [24] created a nonlinear fractional-order model
to examine the dynamic behavior of vector-borne illnesses. To demonstrate their theoretical conclu-
sions, they performed numerical simulations and contrasted the outcomes with integer-order derivative
results. In [25], an immune system-boosting fractional order mathematical model was developed to
investigate how hand contamination may cause pink eye infection and how early vaccinations can treat
it. A mathematical model for human immunodeficiency virus type 1 infection in CD4+ T-cells was
created by researchers in [26]. It included fractional-order dynamics and graphical representations to
show how model parameters affected the infection. The study [27] created a Caputo fractional or-
der model for the control of pneumonia infections and used numerical simulation to examine how it
affected specific model parameters. Baleanu et al. [28] suggested a more versatile and generalized
operator, the constant-proportional Caputo fractional derivative. Furthermore, the proportional deriva-
tive was merged with two well-known fractional derivatives by Ali Akgiil [29]. As can be seen in
[30, 31, 32, 33], researchers are using these definitions to produce a number of useful results.

2. Fundamentals

Definition 2.1. In [28], Baleanu et al. created two hybrid fractional operators known as Proportional
Caputo (PC) and constant proportional Caputo (CPC) as given below:

(50! p(1) = iy Jo (A1 (. ©0p (€) + Ao(.£)p'(6) ) (1 — ) e
:RLIJ H LA (1, 0)p (1) + Ao, 1)p' ()

67D P(1) = rrmpy Jo [A1(m)p(e) +Ao(u)p' ()] (t — €) Hde

k = Av(u) §H1 " p(t) +Ao() DY (1).

Definition 2.2. Ali Akgiil [29] suggested two new hybrid fractional operators, Constant-Proportional
Atangana-Baleanu (CPABC) and Constant-Proportional Caputo-Fabrizio (CPCF) operators, as stated

(D
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below:

GPABCDE (1) = S f3 [Ar()p(€) +Ao()p' (e) Eu(— 5 (1 — €))de
= ABUOM) 5 () By (— 1 (1 — £)*)de + 220U 18 o/ (), (— 1 (1 — £))de
=p(t) AB(ﬁﬁl(u)Eﬂ(_%tu)ij/(t) AB(A}Qﬁo(u)E”( %“t“)
(2)
§PCrDI p(r) = AL J§ [A1()p (&) + Ao(w)p' (€)] exp(— 7y (1 — €))de
= MR [0 b (€) exp(— 2 (1 — €))de + ") [/ () exp(— 12 (1 —€))de
—p(1) M(Li)il(u) eXp(—lﬁut)+p’(t) M(li)ﬂﬁ?(ﬂ exp(—%t)
3)

3. Mathematical Model with CPC operator

Here, we address a hybrid edition of the transmission dynamics of skin sores model that has time-
fractional order [3]. In our model, we divide the population into three categories: susceptible, infected,
and recovered, denoted by J, K, and L, respectively. “B” stands for the rate of recruitment into the
susceptible class, “6” for the effective contact rate with infected people, “A” for the rate of recovery,
“n” for the rate of susceptibility of those who have recovered, and “@” for the rate of natural death. In a
set of fractional differential equations given below, the parameters should be positive and biologically
impacted.

§PCDYI(r) = B — 84 + L — ¢,
SPCDIK (1) = 85 — (A + 9K, (4)
SPCDYL(t) = AK — (n + ¢)L.

with non-negative initial constraints,

J0)=1° , K(0)=K" , L(0)=L° (5)

3.1. Positivity, Boundedness and Biological Feasibility
We begin with class LL(z):

CPCDML(t) = AK— (M + @)L > —(M+ @)L, Vi>0 = L(r)>L% 19" vi>0, (6)
for classes J(7) and K(z), we require to define the norm:

181l = sup [E()], )

ZGDg

while Dg is the domain of {. Utilizing this norm, we have for the class J(z);

DI = B8 +nL—¢T > -85 —9I= (5[5 +9)J vi>0

SUP~e ‘K| o
__(581&2??]%%)3:_(6%%)& Vi >0 ®)
[Keo
= J(t) > Joe‘(‘swﬂléﬁ“p)’, vt > 0.

Similarly, we find

5 3=

K(r) > Ko P07 yr > 0. )

We also find

{SPCD#Nm = §PCDYI(r) + §PCDIK (1) + §PEDIL(r) 10

=B—-0(J+K+L)=p—o¢N.
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It implies that {PCDI'N(¢) < 0if N > % Specially N(z) < % it N(0) < % Therefore, the feasible region
1s as:

:{(J,K,L)eRi:Ngg}. (11)
3.2. Existence and uniqueness of solutions of the proposed model
Let
M, JKL) =B85 +nL— 9],
M KL) = 6%~ (1 +O)K, (12)
l?)(tw]]?K?L):}LK (77 +¢)L
Define a Banach space S[0, T| = B under the norm
IE]l = sup (|J(0)]+ K@)+ L)) (13)
t€[0,T]
J(t) JO Al(tw]]?K?L)?
where O(t) = K@) St)=<K" =< A(,],K L), (14)
LL(t) IO 25(t,J,K,L).

From above set, we can express the system (4) as

67Dy (1) = 0 (1,0(1)), 1€ [0,T], (15)
%(0) = .
(15) is equivalent to Volterra integral equation [34]:
fAL (1) ffh (1) , 0, B(€)) (s —e)* 2
B(t) = B(0) exp (— dv) / / dv deds,
(6)=50)exp 0 Ao(u) p—=1) Ao(p) ) Ao(u) (16)
where ¢ € [0, T]. we make hypothesis as stated below:
() : |o(r, ()| < Gu|d[P + Gy _ _
(ii): For every ¥, ¥ there exists a constant G;, > 0 such that |0(7, %) — @(z,9)| < G||® — O ||
We define an operator k : B — B as:
Ai) ’fll (1), (s—€)H2
KV (1) = Ypex —/ // dv (e, V(€))deds.
(1) = Doexp 0 ﬂo(u p—1) Ao(u) ) Ao(1) (&,0(e)) a7

Theorem 3.1. Assume that if hypotheses (i) and (ii) are correct, then equation (15) contains at least
one solution, which is required for its justification.

Proof. (1). Let’s start by assuming that x is continuous. Assume that @ (&, (¢€)) is also continuous as
¥ is a continuous. Moreover, if for ¢, ¥, € B 3 ¥, — ¥ then we get k1%, —> k. Consider

|k, — kD :max,e[on(ﬁfgfgexp( JANR) gy) B2 1 (e 9, () ( (e,0(e ))]dsds]

Aoty V) " Asth
< max,ciom iy o 0 |k || @ (8 9, (€)) — (@(e, B(e))|deds < mlisGullv, — 0]
(18)

67



F(u+l GL||19 — ]| — 0 as p —> . As ® is continuous K also continuous.
(2). We shall now demonstrate that k is bounded. Assume that k satisfies the growth requirement for
this purpose.

-2
|8 = max,cpo.1 1ﬁoexp< Jo A dv) + s Jo o exp(— [ 34 > [j o(e,0(e))deds|
_)ﬁoexp flAl dV ’+‘F(u 1)f0foeXP( flAl ) ()) (e, V(e ))dsds‘
< |90 -+ max,cio 1) mry Jo Jo | Sacter || (e, (e ))‘deds <[00 + gy (Gul9 1P + Gy ).

(19)
This implies that K is bounded.
(3). Here, we demonstrate the equicontinuity of k. Assume #1,, € [0,T] for this reason. For #, < 1;
and U € .%,, we determine that

(‘Kﬁ(tl)—l(‘ﬁ(tz)’< ‘19oexp( é‘ﬁlg gdv)—ﬁoexp( fézﬁ(l) )‘
(1)
(1)

s—g)H2
) rn| o (exp (—Ji' Aiigev) —exp (— 2 22053 %dv)) L (e B(e))deds
s u
—d ‘ | pexp (— Jy bav) S o e, 0(e)deds|
Gy|d|P+Gy | A Gy|8P+G
\ < (|4t 190‘ e 44 §‘t1>(’1_’2)+ e | ),

(20)
where 1 € (t1,1;). Since t» — 1, the RHS of above inequality approaches to zero independently of
¥ € %,. According to the Arzela-Ascoli theorem, it is hence compact. (4). Lastly, we demonstrate
that the set below is bounded.

W(k)={0€B: 0 =wkd,we (0,1)}. @1
For this, let V7 € [0,T] and ¥ € W(k), then
TH »
B0 =wB O] < w(|80l + 5 [GuloI +6v] ). (22)

Since it is bounded, k has at least one solution in accordance with Schaefer’s fixed-point theorem. [

Theorem 3.2. If T(Zi[{ 7 < 1 then equation (15) has unique solution.

Proof. Consideer ¥, € 2, then

ey s A s—g)h2 =
19— B = max,ciom | iy Jo o exp (— f3 et av) Sy @ <e 2(2) - (ae, e ))]deds
s | (s—e)h2
< maxee(o.1) 7y Jo Jo |(A0€()/,L) Hw(&ﬁ(g)) (0(e, 0 )dgds < a6l =9
(23)
Therefore, it is unique and has specific solution. U

3.3. Equilibrium Points

Disease-free equilibrium occurs in the absence of disease. Hence, We find the disease-free equilib-
rium states (E°) as given below:

€ = (Jo,Ko, Lo) = (g,o,O). 4
Endemic equilibrium point, denoted by £, is as stated below:
J* — (A+9)N K — _ 9+ [No (2-+9) B3]
* 6 - ¢6(A+¢+n) ’
&= (25)
Lx— _A[Noa+0)-p3]
- ¢6(A+0+n)
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3.4. Reproductive Number

On system (4), we apply the next generation matrix approach [35]. The reproductive number Ry is
as follows: 5

Ry = ——.
"7 219

(26)
3.5. Stability Analysis
Lemma 3.3. [36] Assume that F(t) € R be a continuous function and for any t > to;

F*
0]

Theorem 3.4. If Ry < 1, then & is globally asymptotically stable.

CPCpH (F(t) —F*—F*ln@> < (

F*

)OCPCD;‘F@) , FFeR",Yue(0,1). (27

Proof. Define Lyapunov function as

J
F:(J—JO—JOInJ—)+K+L. (28)
0
From Lemma(3.3), we get
J
CPCDHE < (1 - f) CPCDMT 4 CPCDHK 4 SPCDHLL, (29)

Replacing gP CDHT, gp CDFK, gp CDMIL with their values from (4), we have

JK

CPCDHF < (1 — "];70) (B —S%Jrnm,—w) + (5W —(A+¢)K)+ (AK—(n+¢)L). (30

Assume J =J — Jp, K=K —-Ky, L =L — Ly and after some calculations, we get

CPCDHE < ﬁ(J_JJO) _5(3—30);1(\1K—K0) —n(%)(L—Lo)—wJ_JJO)z +6(J_JO)I(\IK_KO)
—¢(K—Ko) —¢(L—Lo). (1)

While {PCDf'F < 0 for Rg < 1, and FCD}'F = 0 only when J = Jo, K = Ko, L = L. Hence, we can
make conclusion that system (4) is globally asymptotically stable. ]

Theorem 3.5. If Ry > 1, then The endemic equilibrium states E* are globally asymptotically stable.

Proof. Let
F=Q(J-J"-J1 J K-K*-K*1 K L-L*—1L*1 L 32
=0 (J-J" = HE)‘FQz( — K= n@)+Q3( — L= n@)v (32)
while Q;, i = 1,2, 3. are positive constants to be selected later. Then, we get
J—J* K—K* L-L~*
6 DIF < (=) § DIT+Q(——) 7D K+03(——) §7DfL.  (33)

o J K L

Now substituting the values of $7°D!'J, §PCDJ K, §PCDf'LL from (4) as given below;

{67°DFF <Qu (P57 [B — 85 + nL— 03] + 0“5 [ — (A + 9)K] +as (17 [AK — (11 + 9)L.
(34)
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using ] =] —-J" , K=K—-K*,L=L—-L", we have
CPCDIF < Q1 — QIB( ) 05 K 1, 6<”>K*+QmL Qi (L)L — a9 S50
e K QS(KK>J* LA +¢) B 4 QaAK — G5AK" — g3A (B)K
+Q3/1(r) - 3(7?+¢)—

(35)
Suppose Q; = Q> = Q3 = 1 then we have
§reofE < B p(Y) - 6<J*J*>2K+6<Jfﬂ*>2K*+nL n(FIL -0t + 55w
CEEED (A4 9) B AR - AR - A (KK + ( K- (n+¢) S
(36)
For simplification, we can write
§FEDIF <y — 1, (37)
where
n=B+8 T Kk L+ s E K T - 5<K—K*>2J*+AK+A(%)K*
p=—B(L) -SSR (I — 8L a4 9) B R A (K (38)
—(n+¢) & L*)

We can see that if 71 < pp = gPCD“F < 0. While, if we have J = J* ,K = K* ,L. = L* then we
examine 1 — % = 0= CPCDMF = 0. We investigate that the greatest compact invariant set in the
proposed model in

{(J*,K*,L*) € W : SPCDHF — 0} (39)
is the point £*, the endemic equilibrium. Therefore, we con make conclusion that E* is globally
asymptotically stable in W if y; < 7. O

3.6. Second Derivative of Lyapunov

More observation on the details of each variation is required because the first derivative evaluation
of an arbitrary function cannot fully illustrate its variations. As a result, we investigate the system’s
associated Lyapunov function’s second derivative as follows:

OCPCD#(S’PCD#F) < CPCDIJ |:Q (JfTJH*) CPCD‘HQU—l—Q (]KfK*) CPCD“K—FQg,(LEL*) CPCDIJ]L:|
M CPCH CPCHl

< (cPCD J) T +Q ( PCD} K) K* + Qs ( PCD} IL) L*+Q1(I_JT)CPCDAI(CPCD#J)

+Q (1 K)CPCDﬂ(CPCDMK)+Q3( %*)SPCD#(SPCD#L)7

(40)
where

CPCDH NK+J( SPCDIK) ) N—( SPEDHN)IK
crepp(CPephy(y) — p — g (DI DIO)N(DINIE | crepuy ) g cPopiiy),

N
CPC M CPC H CPC M
crepp (St (r)) — s LI DRI GOIOINETDINIG _ 5 ) creppi),
CPCDI(ECDPL(1)) = A(§CDMK) — (n+ 9)( §DPL).

(41)
Then we obtain
(§7CDY§7DY'F] < O K,L)
. %)[ (( CPCDEIK+J( OCPCEZZK))N—(OCPCDZMN)JK_'_n(CPCD;JL)_¢(8PCD¢1J)}
+ap(1 - ) [pLRIIGTPONCTTIN 5 1 g Grepp],
\ +0s (1= %) |A(§7°DFK) - (n +9)(§7°DI'L))

(42)
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Where

CPCDNJ CPCH CPCD'“L

K., .
3 )2T* 4+ (2 ) K+t

O(J,K,L,Y,2,R) = q; (2 )’ (43)

now replace §7CDf'J, SPEDf'K, §PEDY'L in equation with their values from the system (4). After

simplifying and d1fferent1at1ng resulting equation into sum of positive expressions denoted by ¢; and
negative expressions denoted by ¢,, we can express

57D [§PCDIF) < o1 — ¢ (44)

We examine that
SPCDY [SPEDYF] > 0if @y > o, SPEDI[SFEDI'F] < 0if @1 < @, and §PEDY [ SFEDYF] = 0/if @) = 9.

3.7. Analysis of Proposed Model
The inverse operators for the PC and CPC operators are given by

POT(1) = fexp(— J1 e gy E00 131E) gg RO (1) — I 1 oxp(— i) (1 _ g) RLDL (g de
PERK(r) = fiexp(— J1 2200 qy) B0 TG0 e | creypgr) — mféexp(—ﬁgﬁﬁi(t— €)RDL K (e)de.
POWL(r) = fjexp(— 12 j%dv>RLﬁi‘<_:f];§£)d8,SPCIfL(t)Z%l(u)féexp( A0 — ¢))RLDI ML (e)de,
that ensure the following inversion relations [28]: )

BODE (BT (1)) = §PEDI (§PCUD(0) = 1(1) — gy limi o §LDD(2),

6D (K () = 7D (FPNK (1)) = K (1) — =gy limi—0 6D K (1), (46)

BOD (BCIL(1)) = §PEDI (SPOHL(1)) = L(t) — gy limy o EDIL(1),

BV (EEDII() = I(r) — exp(— J§ 7123 dv)I(0) , §POU(SPEDIT(1) = I(r) — exp(— 75 1)3(0),

’ ~ Ao(w)
BV (FCDIR (1)) = K (1) — exp(— [ ﬁ;ﬁxgdvm 0) , S (SPEDIK (1)) = K(r) — exp(— 71K (0),
PV (FCDIL(1)) = L(r) — exp(— fy &S dv)L(0) , §POU (SPEDIL(r)) = L(r) — exp(—LE31)L(0)
(47)
Proof. We can express (45) as operational composition as follows;
PCIIJ PllJ RLD1 u 7 CPCIIJ CPllJ RLD1 IJ (48)

Hence, we have for class J(z):

((5CD o 2N I(r) = (RHI, o PD“) <Pl“ RLD““)J(r)—(RLI}‘“-gLD}‘“w(r)

<§Cl¢‘-§cbﬁ‘>ﬂ<z>:<P1,“-RLD1 He (RLII . PD1 3(t) = (I «PDMI(1)
= J(t) — exp(— Ji 7-Edv)J(0),

(§PCDF o SPCUNI(r) = (BH1, H o CPDI) o <CPI“ RLD) I () = (BH, ™ o KD, ™I (1)
= P(t) = e im0 6401 0(1),

(§PI 0 SPEDIYI(r) = (CPI o BLD, M) @ (L1, ™ D, M) I(r) = (CPI « DI ) I (1)
= J(¢) —exp(— Aégﬁgt)J(O).

\

This method allows us to demonstrate it for other classes. ]
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Lemma 3.6. For I1=m+n—ij, we can simplify the operator Dam’”’H as given below:

mn,uJ():g(l m),u D'u|1 H“J(t) 1 muDHuJ( >,
DI (1) = [P pi (1T “K(r): T DI (1), (49)
mn’“L(Z) 1 —m),1 DX |(1 1), IJL( t) = a(l m), i DL ’“L( 1)

Proof. Utilizing definitions [37], we find

D ( ]
DAL (r) = 10 DB (1 ),
SR Pt Pl g><1—H>—IJ<e> ] = 110 DI 1),
~1
— r(=m)u [%I;e%@*)(;—s) )-1K (g)de] = 11" DMK (1), (50)

u—1

_ "(l—m)#[ DY T(t_s)([_g) I]L(s) ] 1 —m),u DH “IL,( ).

t
=g mfae
O

Lemma 3.7. Consider 0 <m <1, p € (0,1, 0<n<1, and I=m+n—mn. If {J, KL} €
CI! Lla,b] then

D) = D) D () = D),
[L# plt “K(t) mE DR () DIH MER (1) = DIUTEK (), (51)
H“ DIML(r) = ’”“ DIML(r) , DM IMML(r) = Dp L),

Proof. utilizing Lemma (3.6)

IHu DHMJ( ) H/J,[l n(l—m),u Dmn,uJ( )} m+n mn, L Ifn(l m),u DmnuJ( )_ l;n,u D?l’n’ﬂj(t),

Hu DH “K(l‘) [ n(l—m),u Dm n,uK(t)] . m—|—n mn, 1L | n(l—m),u D;nn,p,K(t) _ I;n,/.t D;n’n’“K(t),
““ DIMIL(r) = I 10K DL ()] = |;”+” i |,‘”“"")’” DM HL(r) = I DML ().
(52)

Additionally, by definition[30], we find that

D () = Dff 1 () = DI P () = D g a),
DI MK (1) = DI 1) TR R (1) = D ITMRR (1) = DY TR (1), (53)
“ HMR(r) = DI 1T PR () = DR R () = DL ),

3.8. Solution of system (4) with CPC operator

Let
) §PEDFI(1) = B — ET()K(t) + () — 9J(2),
SPCDK (1) = EJ(1)K (1) — (A + ¢)K(2), (54)
§PCDIL(r) = AK(1) — (n + ¢)L(2),

with non-negative initial constraints,

J00)=1° , K(0)=K° , L(0)=LY, (55)



where £ = %. Applying Laplace Transform, we have

200) = st (Aowst To+ &~ E2UOKO]+n.2[L0)] - 9.2[0)]).
LK) = 7ot (Ao (s Ko+ ELTNOK )] - (X +0) LK ()] ),
L) = gt (Ao()sh Lo+ AL K]~ (0 +9).L[L()] ).
(56)
Equivalently
( _ X o (A )" e
200 = i+ X G (§ - SZBOROL 02 1L0)] - 0.20)])
w0y AW B
RO = m L Eﬁo(pz));ur]s B (ELIORE) - (A+9).LK](1)),
__ L o (—Aw))" —n _
A0 = it B (e (RO (140 210)
(57)
Consider that the method gives the outcomes as an infinite series;
:ia]]k > K(t):iKk ’ ]L(t):il‘k (58)
k=0 k=0 k=0
_Yyz zo— (4 kkAfJ-kAff k=0,1,2,3 59
_lg)k > k—E(d_A) [;) ]J;) j:|A:0, — U, L, 4,9, (59)
using equation (58) and (59), and applying Inverse Laplace on both sides of equation (57) , we obtain
B an L v A\ B
Tolt) = Sexe=5ii )+ 7o 1 Z ) w1y 0)
Ko(r) = KOexp(—Lklr) , Lo(r) = LOexp(—4 k),
and for k > 0,
( _ oo -Al(.u) t/H—n—l B
Jk-i-l(t) - .A()l([,L) r;)( AO(M)) F(,U+nl)g : <_§$[Zk] +n$[Lk] _¢$[Jk])7
e A H+n—
K (0= iy £ (~ ) T2 (6210~ 3+0)2150). 1
_ 1 < N
L) =ty X (- 200 T (A2 - (n+0).21L).

4. Transmission Dynamics of Skin Sores model with CPABC operator

Let
) 67D A1) = B = EA()K (1) +nL(r) — 9(1),
GBI K (1) = &) K (1) — (A + 9)K (1), (62)
GABCDIL(1) = A% (1) — (N +9) L (r).
with
J0)=7° , K0)=%", £(0)=c" (63)
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Theorem 4.1. The Laplace Transform of CPABC operator is defined [29] as:

st g w)st1
g[gPABCDNH( 1] = (AB(N)AI(IQ_H“(:F ”A;B(u)fll( )3[3@] ( “Hﬁo )130
sH sH u)st
LSPABCDH (1)) = ( (MJHHI(JIF MAB ) LIK(0)] ( u+)sﬁ<(>§ )u) 1 )%, (64)
sH sH sH
LISPABCDY £ (1)) = (AEUMIIE RSO () [ (1)) — (ABLMOUON ) 20,

Proof. According to equation (2), we have

L[SPBCDE (1)) = %3[3@)] ﬁ:slul u)) n AIB(;li)u o) (5. 2[9(t)] — 3°) - ;ﬁ;;l(—(ll:l:t))’
LISPABCDIK (1)) = W‘g[%@] .t 11 L;l)) n AB(;IL)”( ) (21K (1)] — KO) ﬁ:‘(—(ll—i))’
sh—1 sH=1(1—
X[CPABCD“L(Z)] AB(u )ﬁl(#)g[ﬁ (1)) u+s”((11—l:1)) i AB(;lt)/lllo( )(SX[L ()] — LO) ) u+sﬂ((11_!:1))'
_ (AB()A; (st st AB( )A (1) AB(u)A (ll)S”_1 0
. s s M) Ao (p)s: 0
-t o i oo (Sl e
- ( ,uis“%lliu) )g['&(t)] +( u+s(1— u)ﬂ )g[L(Z) ( /J—Q—s“?l—u) )LO’

Theorem 4.2. [29] Let

6TECDI (1) = Cu(n),

CPABCDI K (1) = Ca(t), (65)
67Dy L (1) = Cs(1).

Applying Laplace Transform to the both sides of equations and assuming 3(0) = K(0) = £(0) =0,

(i o Ail) e -0 &, AW,

90) = mEam ’;)(_A_O(ét); O+ TR & A (zt))) oG
_—w _‘Alu n u+n 1—u - A .

X0 = i 4 Ay OO B A & Ay OF R €0

<= AB(M%MW,;,(_A;EZ;) e C3(t)—|——AB(N)/ﬁ)(u) ¥ (- A;Eg) o'C5(1).

Proof. Consider first Equation from (65) and utilizing Theorem (4.1), we have

B R ),
FEO = EE e () + s )
_ ptsi(1-p) 21C,0)]. (67)

st AB () Ao()[1+ 7t

Equivalently

X[H(l‘)] = [m i(_M)ns—n—M_f_ 1—,“ i(_ﬂl(u))ns—n]j[cl(t)] (68)

We have, fori=1,2,3,

I'(p+n)

n n-1 (69)
SLIC0] = L () Z1Ci(0) = Z(Cu0) o ) = Lo C0)]

{s_”_l.,iﬂ[ci(t)] = L ({1 Z1Ci0) = 2 (Cilr) o f7) = Zloly ™ Ci(0)



0 o Al \n oy qutn l-p &, Ail()n
Zit)=———— — Loy TCi()]+ — ZLol7Cy(1)].
PO1= BBt o) 2 OO EB s & Ay ZEC )
(70)
Applying Inverse Laplace transform, we have the required result. []
Using Laplace Transform on both sides of equations and utilizing Theorem (4.1), we get:
N sl
L100] = ot (B2 0+ 05c) 500030
fl()
sh(1 AB(u)Ag(p)s* !
2100 = g (2 e - 1 010
olH
L)) = pots (1-p) ABW A" 10 L ool 9 g0(4) — L)1),
(20 = Sy (ST 20+ 2 (%00~ (n+ )20
(71)
Equivalently
( s ng—n >° AI(H) n
L10(t)]) = — Ly + gt U Y (L L(B—EIDOK(E)+nL(t)—0d()),
0(0) = - hir + M w1 AO({‘))) (B-€a()x()+nL() - 93(0))
n ) e A1)\ n
LK) = X T )y 2 ZL(EIDOK 1) — (A +0)K(r)),
50} = 3 + %0( ﬁo((u))) (e300~ (A +9)x()
L) = L0 st s )y BRI o0 g0y — (4 0)£(0) ).
| L10) = i+t L (~ o) (%)~ (n+9)2()
(72)
Consider equation (58) and (59), and using Inverse Laplace on both sides of equation (72) , we have
( - A nep 1 —n(. —
3k+1(f)=m2(—ﬁégﬁs) <z 1[3 <lls ”+(1—H)>$[—5Zk+ﬂ5k—¢3k”,
n=0
K1 (6) = w5 L (— A(I)Eﬁ;) = I[S <NS “+(1—#))3[§Zk—(l+¢)xkﬂ,
n=0
.- A nep [ nf, —
L (1) = mmmm L (—A;EB) &z 1[s (,us “+(1—u)>g[mk—(n+¢)zk”
\ n=0
(73)

5. Transmission Dynamics of Skin Sores Disease Model with CPCF operator
Here we modify model (4) by replacing CPC with CPCF operator.
6 DI I(r) =B —EJ (1)K () +nL(t) — ¢J (1),
6 DI K () = EJ (1)K (1) — (A + @)K (1), (74)
SPCFDIL() = AK(1) — (n + 9)L(1),
with non-negative initial values,
J0)=J% , K©0)=K" , L(0)=L". (75)
Theorem 5.1. The Laplace Transform of CPCF operator is given [29] as:

g[CPCFDMJ( 1)] = ( (A1 (1) + SM(”)AO(”))X[J(I)] _ <M(N)A0(H)>J0

u+(s()1 P(l)) u+(s(;fu()) u+(s(1) u())

CPCF nM _ WA (U sM(u)Ag(p M(u 0

ZIGPFDK (1)) = (MUl | MW gk (1)) — (L)) o, (76)
M(u)A M(u)A

2167 Df L)) = (G + ) £ 1L0) - (G )2
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Proof. Utilizing equation(3), we find

ZI§PF DI (1)) = U 2 (1)) [exp(— )] + U 27 (1)) [exp(—20)],
ZI§PF DK (1)) = "AE 2K (1)].2 [exp(— )] + HEE0 2K (1)].2 [exp(—251)].
LIGPEF DL (1)) = ML 2[1 (1)) £ [exp(—51)] + AU 2 (L (1)] 2 [exp(—1251)]
(77)
= HEE2(0)]- o+ HERE (2 V0] -(0) -
K} - s -
= MU 21K (1) e + HEA (2K (1)] - K(0)) - s (78)
S q N q
= L) e+ R L0 - 1(0) -
_ (M)A (1) sML(p) Ao (1) M(p) Ao (1)
B o S e (e
~ ) A0 G MO (et ) i
- ( u+s(llu) )"%[L(t)] +( u+s(lfu) )X[L(t)] o ( u+s(lgu) )L
[l

Theorem 5.2. [29] Let
CPCFDMJ( ) Sl(t),
CPCFDRK (1) = Sz(t), (80)
CPCFD”L(I) (t)

Using Laplace Transform, we have

rJ( i “ 1n+181(t) I — M i %)"01;’81(0,
K(t) i Z) 1n+1§2(t) +— M i AOE § ol'Sy(1), (81)
= (u " & A
\L( ; (‘u I S3 ( )-l-M ’Z’ Ao(‘U) ()Itgg(Z‘).
Proof. Consider class J from (80). As Z [P D' J(t)] = Z[S:(¢)]. Applying Theorem (5.1), we have
_ p+s(l—p) _ ps(l—p)
LU0 = () () T sAo (u)].ﬁf[Sl(t)] = oA ﬁégﬁgs_l]f[sl(t)]. (82)

After some simplification, we have

P 2510+ g (- Ry 05,0

J(l) _ L i (_ -Al(“))ng[ol;ﬁ—lgl(t)] +1_—“ i (_-Al(nu)

M(1)Ag (1) = o)) 2SI

(84)
Using Inverse Laplace transform, we get the required result. ]
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Consider system (74) with non-negative initial values (75). Using Laplace Transform and imple-
menting Theorem (5.1), we get the following recursive formula:

T (6) = Pexp (= Z4830) + 27 (st st 2 B — §74-+ L= 941] ).
Kiey1 (1) = KOoxp (— 71{k3r) +.2 _]<M(u)Aﬂ)sva%)Ao [é%_(’“r‘b)[{"]) (59

Ao(u
_ s(1—
L (1) = LOexp (= 73051) + 2 1<M(u>ﬂﬂ>isMﬂ>Ao(u>g 2K~ (n+0)Li] ).

~—|

5.1. Analysis of Iteration Method
Theorem 5.3. Let (G, || * ||) be the Banach space, and let H be the self map of G that guarantees

|H; —H,|| <M[ji —H;|| +m| p—ql|, (86)
forall p,ge Gand 0 <M, 0<m< 1.

Proof. Suppose

s(1
Jir1(t) :JOexp( Eﬁ;t) + £ ( (“)A1LE+)J(FSMLE) Vo (1 [ﬁ §%+nLk_¢JkD
s(1
Ki1 (1) = KOexp (— 3Ll01) + 271 (7 (”)Afg;)isM“(Lw LW~ (h+9)Kd] ). (87)
+s(1—
Lint(t) = Lexp (~ 3H430) +.27 (5 (u)flﬁ#)jrsMu(L)Ao(u)"% Ak~ +o)L] ).

u+s(1—p) . ..
where LA MESTIMYAM) denotes fractional Lagrange multiplier. ]

Theorem 5.4. Consider a self-map H described as

~—|

H(Jy) = Jiy1 (1) = JOexp (— j(l) Z)t) + o1 [M(u)ﬂlﬁfi&%mo(mg(ﬁ —EN K+ L — ¢Jk)] :

H(Ky) = Ko (1) = KOexp (= {830) + 271 | ol 2 (60K — (A + 9K |

A _ s(1—
(L0 = Lasa0) = P exp (~ 39830) +-2 st (0K~ (0 + 01|

—

~—|

(88)

(01 (W)T2+ET10x (1) +MQ3(1) +904(u)] <1,
is H—stable in L' (a,b) if { [EQs(u)T2+ET1Q6(1) + (A +¢)07(1)] < 1, (89)
[A0s(1)+ (N +9)0o(1)] < 1.

Proof. Consider class J from (88). We find the following for every (p,q) € N x N.

H[J7 (1)) — HJ9 (1)
= 2 (s s ) (L1B — EIPKP + 017 — 7] — L [B — EJ9KT + L9 — 9J9)).

(90)
Without losing generality, and applying norm, we get
[H{?(2)) —H(J(@))]
s(1—
= 2 (g st (L 18 — EIPKP +0LP =07 = Z|B —§ 9K + LI — qm(] 3 \1\).

Using triangle inequality and simplifying expressions, we have

IH(?(0) =B < 2 el vt
{2 (1| - &P (kP — K| +]|  EK9WP IO+ m(LP — L9) | + || = 9 (7 =) ) }.
(92)
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Since the results have similar role, we can write that

1I7() = J4 ()| = 1 KP (1) = K9(0)[| = |17 (2) = L (2)]]- (93)

IH(7()) = HE)| < 2 (i)

{2 (= &ar@r = g9+ || = EKIIP = 30|+ [n (7 = J9) | +]| - 97 — I ) }.

94)
Similarly we can find this for remaining classes. As {J”}, {K?}, {LP}, are positive and convergent
sequences. Hence, we have for every ¢

—

[P < T, [[KP|[ < T, [IL7]) < Ts. (95)

Hence, we find finally

[H(JP(t)) —H(J9(1))|| < [EQ1 ()2 +ET102(1) + nQO3(1) + 9 Qa(1)],
IH(KP (1)) —H(K9(t))[| < [EQ5(u)T2+ET1Q6 (1) + (A +¢)07 ()], (96)
[H(LP(r)) —H (L)) | < [AQs(1) + (N4 ¢)Qo(1)].

=

Here, Q;(1),i=1,2,3,...,9 represent functions from .#~! [.,2” (M(M)AILEZ)SJ(:SM&)AO(”) )} . Consequently,

a fixed value exists in the mapping H. We then conclude that H fulfils all the contexts in the afore-
mentioned Theorem(5.3). Assume that equations (95) and (96) hold. This implies that ® = (0,0,0).
Where

[E01()T2+ET102 (1) +MQO3(1) +90a(1)] <1,

® = q [E0s(T2+ET1Q6(1) + (A +9)07(0)] < 1, 97)
[AQs(1) +(n+0)Qo(1)] < 1.
H ensures all the requirements of Theorem(5.4) and , is therefore, Picard H-stable. O

6. Result and Discussion

The fractional order skin sores model simulation is shown inside the pictures in this section using
the following simple parameters from [3]: 6 =0.067, A =0.007, n = 0.00021, ¢ =0.012, and 8 = 6N.
These simulations show how models’ behavior is impacted by changes in value. In order to give
N = 12,500 as the entire population under study, we have used initial points of J(0) = 10,000, K(0) =
500, and L(0) = 2000. Figure (2) simulates the series results of equations (58) with CPC operator
according to distinct values of u, while Figure (3) simulates the series outcomes with CPCF operator
based on distinguished values of u, and Figure (4) simulates the series outcomes with CPCF operator
according to distinct values of u. MATLAB is used for simulating these recurring results. Figures
(5), (6), and (7) also compare plots with CPC, CPABC, and CPCF operators for the simulations of
J, K, and L with varying fractional order u, (1 = 0.99,0.98,0.97). For this assessment. According
to the study, ordinary derivatives have less degrees of freedom than the fractional order skin sores
version. The compartments of the model use non-integer values of the fractional parameter to display
first-rate feedback. Growth or lower interest actions happen more quickly in small fractional orders
than in large fractional orders. It’s obvious that this system’s efficacy might be greatly increased by
reducing the step time and calculating more terms or components for every variable. In presenting
physical procedures, fractional order derivations have been shown to be more effective, dependable,
and superior than classical orders. The results of the numerical simulation show that this method is a
very effective and extreme way to find analytical solutions for a wide variety of fractional nonlinear
systems.
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Figure 2: Simulation of Skin Sores model with CPC operator for various values of fractional order
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Figure 3: Simulation of Skin Sores model with CPABC operator for various values of fractional order
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Figure 4: Simulation of Skin Sores model with CPCF operator for various values of fractional order
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Figure 5: Simulation of Susceptible individuals for various values of fractional order
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Figure 6: Simulation of Infected individuals for various values of fractional order u
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Figure 7: Simulation of Recovered individuals for various values of fractional order

7. Conclusion

An important issue in the applied sciences is examined in this paper: a nonlinear fractional order
skin sores disease model. The study emphasizes how mathematical modeling can be used to prepare,
negotiate, and manipulate the catastrophic social repercussions of infectious diseases. The study as-
sesses the CPC, CPABC, and CPCF operators and discusses both qualitative and quantitative criticisms.
In order to model the impacts of high fractional order and fractal size values, the authors additionally
create a numerical simulation using MATLAB and LADM. One effective mathematical model for
the disease of skin sores is the fractional operator. The fractional order can be changed to affect its
behavior. The model is helpful and offers insight into infection dynamics because of its graphical ef-
fect. The fractional order derivation examines the full transmission from the infected character to the
end, whereas the non-integer order derivation examines the sickness in a single area. In dermatology,
this method enhances the effectiveness of traditional experimental methods. Policymakers and public

health professionals may find the data useful in preventing the spread of skin sores through immuniza-
tion.
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