Dynamical transmission of Varicella Virus in Jordan with SVIR Model through analysis and numerical simulations

Authors

  • Manal Ghannam Faculty of Art and Sciences, Department of Mathematics, Near East University, Northren Cyprus, Turkey

DOI:

https://doi.org/10.48165/jmmfc.2024

Keywords:

Varicella virus, Routh-Hurwitz stability, Sensitivity analysis, Basic reproduction Number.

Abstract

Chickenpox, another name for varicella virus, is a highly contagious illness. In this work, we use mathematical modelling and simulation to examine the dynamics of transmission and propose an SVIR model for the varicella virus in Jordan. The dynamics of the population in various classes are examined using a suggested model, which offers a more thorough comprehension of the course of the epidemic and the efficacy of control efforts. Lipschitz condition and fixed-point theory were also used to establish the solution's existence and uniqueness. Additionally, using figures and mathematics, it investigates the effects of different factors on the reproductive number and sensitivity analysis of the suggested model. The Routh-Hurwitz stability criterion is used to determine local stability at equilibrium sites that are both disease-free and endemic. Lyapunov functions with the first derivative test used to establish the global stability of model equilibria analysis for both >1 and <1. the suggested model is numerically simulated using Matlab software to ascertain how parameters affect the scenarios. The findings of this study confirm the theoretical and biological phenomena of the model and aid in elucidating the mechanisms of varicella virus transmission and directing public safety policy decisions. In the conclusion, Since the varicella virus puts a lot of demand on the country's healthcare system, the Jordanian Ministry of Health should launch vaccination campaigns in order to eliminate the disease because a universal varicella vaccination is necessary. Long-lasting protection from varicella immunization lowers the risk of epidemics and promotes community health, and lowering the overall burden of varicella virus infection frees up funds for other health concerns.

Author Biography

  • Manal Ghannam, Faculty of Art and Sciences, Department of Mathematics, Near East University, Northren Cyprus, Turkey

    Mathematical research center, Near East University, Northren Cyprus, Turkey 

References

[1]. Pergam, S. A., Limaye, A. P., & AST Infectious Diseases Community of Practice. (2009). Varicella zoster virus (VZV). American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 9(Suppl 4), S108.

[2]. Gershon, A. A., & Silverstein, S. J. (2009). Varicella‐zoster virus. Clinical virology, 451-474. [3]. Thandi, C. S., & Whittam, L. (2021). Diagnosis and management of common viral skin infections. Prescriber, 32(4), 10-14.

[4]. Gilden, D., Cohrs, R. J., Mahalingam, R., & Nagel, M. A. (2009). Varicella zoster virus vasculopathies: diverse clinical manifestations, laboratory features, pathogenesis, and treatment. The Lancet Neurology, 8(8), 731-740.

[5]. World Health Organization. (2014). Varicella and herpes zoster vaccines: WHO position paper, June 2014. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire, 89(25), 265-287.

[6]. Papaloukas, O., Giannouli, G., & Papaevangelou, V. (2014). Successes and challenges in varicella vaccine. Therapeutic advances in vaccines, 2(2), 39-55.

[7]. Vázquez, M., LaRussa, P. S., Gershon, A. A., Niccolai, L. M., Muehlenbein, C. E., Steinberg, S. P., & Shapiro, E. D. (2004). Effectiveness over time of varicella vaccine. Jama, 291(7), 851-855. [8]. Freer, G., & Pistello, M. (2018). Varicella-zoster virus infection: natural history, clinical manifestations, immunity and current and future vaccination strategies. New

Microbiologica, 41(2), 95-105.

[9]. Trauer, J. M., Denholm, J. T., & McBryde, E. S. (2014). Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the Asia-Pacific. Journal of theoretical biology, 358, 74-84.

[10]. Tabassum, M. F., Saeed, M., Akgül, A., Farman, M., & Chaudhry, N. A. (2020). Treatment of HIV/AIDS epidemic model with vertical transmission by using evolutionary Padé approximation. Chaos, Solitons & Fractals, 134, 109686.

[11]. Adiga, A., Dubhashi, D., Lewis, B., Marathe, M., Venkatramanan, S., & Vullikanti, A. (2020). Mathematical models for covid-19 pandemic: a comparative analysis. Journal of the Indian Institute of Science, 100(4), 793-807.

[12]. Tabassum, M. F., Akgul, A., Akram, S., Farman, M., Karim, R., & Hassan, S. M. U. (2022). Treatment of dynamical nonlinear Measles model: An evolutionary

approach. International Journal of Nonlinear Analysis and Applications, 13(1), 1629-1638.

[13]. Avwerosuo, A. A., & Okedoye, A. M. (2023). Mathematical Modelling of the Dynamics and Control of Communicable Diseases with Emphasis on Cholera Epidemics. Asian Journal of Applied Science and Technology (AJAST), 7(4), 99-119.

[14]. Xu, C., & Farman, M. (2023). Dynamical transmission and mathematical analysis of Ebola virus using a constant proportional operator with a power law kernel. Fractal and Fractional, 7(10), 706.

[15]. Karhunen, M., Leino, T., Salo, H., Davidkin, I., Kilpi, T., & Auranen, K. (2010). Modelling the impact of varicella vaccination on varicella and zoster. Epidemiology & Infection, 138(4), 469-481.

[16]. Edward, S., Kuznetsov, D., & Mirau, S. (2014). Modeling and stability analysis for a varicella zoster virus model with vaccination. Applied and Computational Mathematics, 3(4), 150-162.

[17]. Talbird, S. E., La, E. M., Mauskopf, J., Altland, A., Daniels, V., & Wolfson, L. J. (2018). Understanding the role of exogenous boosting in modeling varicella vaccination. Expert Review of Vaccines, 17(11), 1021-1035.

[18]. Horn, J., Damm, O., Greiner, W., Hengel, H., Kretzschmar, M. E., Siedler, A., ... & Mikolajczyk, R. T. (2018). Influence of demographic changes on the impact of vaccination against varicella and herpes zoster in Germany–a mathematical modelling study. BMC medicine, 16, 1-9.

[19]. Suh, J., Choi, J. K., Lee, J., & Park, S. H. (2022). Estimation of single-dose varicella vaccine effectiveness in South Korea using mathematical modeling. Human Vaccines & Immunotherapeutics, 18(5), 2085468.

[20]. Annual Statistical Report of Communicable Diseases. (2021). Communicable Diseases, Pages 12, 189-196 Directorate.

https://moh.gov.jo/EchoBusV3.0/SystemAssets/Communicable/Annual%20report%202021.pdf [21]. Alfauri, M. A., Mohammad, A. I., Aqel, A. J., & Asad, M. (2022). Trend of Chickenpox in Jordan (2013-2020). Iproceedings, 8(1), e36589.

[22]. Liu, X., Takeuchi, Y., & Iwami, S. (2008). SVIR epidemic models with vaccination strategies. Journal of Theoretical biology, 253(1), 1-11.

[23]. Centers for Disease Control and Prevention (CDC). (2021). National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases. [24]. https://www.cdc.gov/chickenpox/about/transmission.html#:~:text=The%20virus%20spr eads%20easily%20from,with%20someone%20who%20has%20chickenpox.

[25]. Steiner, K., Wallrafen, N., & Weiss, D. (2018). Development of a Mathematical Model of the Spread of Chicken Pox in a Contained Population.

[26]. Kirwa, P., Rotich, T., Obogi, R., & Tanui, P. K. (2017). Boundedness and positivity of a mathematical model of the immune response to HIV infection. Int. J. Sci. Res. Eng. Tech., 6, 847-849.

[27]. Zephaniah, O. C., Nwaugonma, U. I. R., Chioma, I. S., & Adrew, O. (2020). A mathematical model and analysis of an SVEIR model for streptococcus pneumonia with saturated incidence force of infection. Mathematical Modelling and Applications, 5(1), 16-38.

[28]. Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. (1990). On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. Journal of mathematical biology, 28, 365-382.

[29]. Rodrigues, H. S. F. (2012). Optimal control and numerical optimization applied to epidemiological models (Doctoral dissertation, Universidade de Aveiro (Portugal)). [30]. Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2010). The construction of next generation matrices for compartmental epidemic models. Journal of the royal society interface, 7(47), 873-885.

[31]. Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical biosciences, 180(1-2), 29-48.

[32]. Bagkur, C., Guler, E., Kaymakamzade, B., Hincal, E., & Suer, K. (2022). Near future perspective of ESBL-Producing Klebsiella pneumoniae strains using mathematical modeling. CMES, 130, 111-32.

[33]. Abdullat, M., Hayajneh, W., Issa, A. B., Alshurman, A., Marar, B., Al-Hajajrah, A., ... & Wolfson, L. J. (2021). Use of health care resources for varicella in the paediatric population, Jordan. Eastern Mediterranean Health Journal, 27(2).

[34]. Sowole, S. O., Sangare, D., Ibrahim, A. A., & Paul, I. A. (2019). On the existence, uniqueness, stability of solution and numerical simulations of a mathematical model for measles disease. Int. J. Adv. Math, 4, 84-111.

[35]. Hethcote, H. W., & van den Driessche, P. (1991). Some epidemiological models with nonlinear incidence. Journal of Mathematical Biology, 29(3), 271-287.

[36]. Kaymakamzade, B., Baba, I. A., & Hincal, E. (2016). Global stability analysis of oseltamivir–resistant influenza virus model. Procedia Computer Science, 102, 333-341. [37]. Islam, M. S., Asaduzzaman, M., & Mondal, M. N. I. (2014). Stability of an SVI Epidemic Model. IOSR Journal of Mathematics, 10(3), 51-58

[38]. Buonomo, B., & Vargas-De-León, C. (2012). Global stability for an HIV-1 infection model including an eclipse stage of infected cells. Journal of Mathematical Analysis and Applications, 385(2), 709-720.

Downloads

Published

2025-02-14

How to Cite

Dynamical transmission of Varicella Virus in Jordan with SVIR Model through analysis and numerical simulations . (2025). Journal of Mathematical Modeling and Fractional Calculus, 1(2), 72-89. https://doi.org/10.48165/jmmfc.2024