Dynamics of a Food Chain Model Using the Caputo Fractional Derivative
DOI:
https://doi.org/10.48165/jmmfc.2025.2103Keywords:
Food chain model, Caputo fractional operator, Positivity and boundedness, Local stability, Chaos and error analysisAbstract
This work investigates a fractional-order food chain model based on the Caputo operator, taking into account resource availability, competition, and predation. The dynamics of the food chain are bet ter represented using fractional calculus, which takes into account long-range interactions and previous dependency. Analytical and numerical simulations reveal information about the resilience, persistence, and stability of biological communities under fractional order dynamics. The model includes a three species food chain, as well as environmental contamination. We begin by confirming the model’s uniqueness, nonnegativity, and boundedness. We also examine numerous conditions for the presence of equilibrium and local stability. Second, a controller is proposed, and the global stability of the positive equilibrium point is investigated using the Lyapunov method. The proposed model solution was estimated using the fractional iterative technique, and numerical simulations were carried out to validate the theoretical results.
References
[1] I. Torres-Blas, H. Horsler, U. M. Paredes, M. Perkins, S. L. Priestnall, and P. Brekke. Impact of exposure to urban air pollution on grey squirrel (Sciurus carolinensis) lung health. Environ. Pollut. 326 (2023) 121312.
[2] M. G. Neubert, M. Kot. The subcritical collapse of predator populations in discrete-time predator prey models. Math. Biosci. 110(1) (1992) 45–66.
[3] S. Li, C. Liu. Global existence and asymptotic behavior for a fully cross-diffusive predator-prey model. J. Math. Anal. Appl. 525(1) (2023) 127263.
[4] S. Garai, N. C. Pati, N. Pal, G. C. Layek. Organized periodic structures and coexistence of triple attractors in a predator-prey model with fear and refuge. Chaos Solit. 165 (2022) 112833.
[5] D. Bhattacharjee, T. Roy, B. Acharjee, T. K. Dutta. Stage structured prey-predator model incorporating mortal peril consequential to inefficiency and habitat complexity in juvenile hunting. Heliyon 8(11) (2022).
[6] U. S. Sharif, M. H. Mohd. Combined influences of environmental enrichment and harvesting mediate rich dynamics in an intraguild predation fishery system. Ecol. Model. 474 (2022) 110140.
[7] J. Jiao, Q. Quan, X. Dai. Dynamics of a new impulsive predator-prey model with predator population seasonally large-scale migration. Appl. Math. Lett. 132 (2022) 108096.
[8] B. K. Das, D. Sahoo, G. P. Samanta. Impact of fear in a delay-induced predator-prey system with intraspecific competition within predator species. Math. Comput. Simul. 191 (2022) 134–156.
[9] Y. Guo, X. Ma, Y. Zhu, D. Chen, H. Zhang. Research on driving factors of forest ecological security: Evidence from 12 provincial administrative regions in western China. Sustainability 15(6) (2023) 5505.
[10] D. Lopes, J. Ferreira, S. Rafael, K. I. Hoi, X. Li, Y. Liu, K. V. Yuen, K. M. Mok, A. I. Miranda. High-resolution multi-scale air pollution system: Evaluation of modelling performance and emission control strategies. J. Environ. Sci. 137 (2024) 65–81.
[11] A. Chakraborty, P. Veeresha. Effects of global warming, time delay and chaos control on the dynamics of a chaotic atmospheric propagation model within the frame of Caputo fractional operator. Commun. Nonlinear Sci. Numer. 128 (2024) 107657.
[12] K. S. Nisar, A. Ahmad, M. Farman, E. Hincal, A. Zehra. Modeling and mathematical analysis of fractional order Eye infection (conjunctivitis) virus model with treatment impact: Prelicence and dynamical transmission. Alex. Eng. J. 107 (2024) 33–46.
[13] C. Xu, M. Farman, A. Shehzad, K. S. Nisar. Modeling and Ulam-Hyers stability analysis of oleic acid epoxidation by using a fractional-order kinetic model. Math. Methods Appl. Sci. 48(3) (2025) 3726–3747.
[14] W. A. Khan, R. Zarin, A. Zeb, Y. Khan, A. Khan. Navigating food allergy dynamics via a novel fractional mathematical model for antacid-induced allergies. J. Math. Techniques Model. 1(1) (2024).
[15] Z. Zheng, H. Xu, K. Zhang, G. Feng, Q. Zhang, Y. Zhao. Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths. Int. J. Min. Sci. Technol. 34(1) (2024) 117–136.
[16] M. Farman, K. S. Nisar, A. Shehzad, D. Baleanu, A. Amjad, F. Sultan. Computational analysis and chaos control of the fractional order syphilis disease model through modeling. Ain Shams Eng. J. 15(6) (2024) 102743.
[17] I. K. Adu et al. Modelling the dynamics of exposure to smoke from solid cooking fuels and anaemia among women in rural areas. Model. Earth Syst. Environ. 11(2) (2025) 95.
[18] M. Farman, C. Xu, A. Shehzad, A. Akgul. Modeling and dynamics of measles via fractional differential operator of singular and non-singular kernels. Math. Comput. Simul. 221 (2024) 461–488.
[19] S. Wang, X. Xiao, Q. Ding. A novel fractional system grey prediction model with dynamic delay effect for evaluating the state of health of lithium battery. Energy 290 (2024) 130057.
[20] M. Farman et al. Predictive behaviour of globally rumour propagation using a fractional order time scale dynamical model with synthetical social factors. J. Appl. Math. Comput. (2025) 1–36.[21] M. Farman, K. S. Nisar, C. Xu, A. Shehzad, S. Asghar. On the analysis and numerical simulations of the memory-dependent fractional-order model for COVID-19 transmission. Chaos Solitons Fractals 177 (2023) 113868.
[22] M. Farman, F. Ullah, K. S. Nisar, H. Saeed. Comparative study of a nonlinear fractional-order tuberculosis model using different numerical schemes. Alex. Eng. J. 63 (2024) 117–131.
[23] M. Farman, N. Muhammad, M. Alharbi, A. Akgül. On the numerical study of nonlinear HIV/AIDS fractional-order model with memory effect. Math. Biosci. Eng. 21(2) (2024) 2081–2102.
[24] R. Shalini, T. S. R. Murthy. Mathematical model on effect of air pollution in respiratory illness of human using fractional order derivative. Mater. Today: Proc. 113(2) (2024) 176–183.
[25] D. Raut, D. Chakraborty, A. Biswas, G. P. Samanta. A fractional model to study the transmission of COVID-19 and tuberculosis co-infection. Commun. Nonlinear Sci. Numer. Simul. 125 (2024) 107506.
[26] M. Farman, S. Asghar, N. Muhammad, A. Akgül. On the modeling of tuberculosis via fractional operators with memory effect. Phys. Scr. 99(3) (2024) 035211.
[27] M. Farman, N. Muhammad, C. Xu, A. Akgül. Study of dengue virus by using fractal fractional operator of power law and generalized Mittag-Leffler kernel. Math. Methods Appl. Sci. 48(3) (2025) 3726–3747.
[28] N. Muhammad, M. Farman, A. Akgül. Mathematical modeling and dynamics of dual variants of COVID-19: Omicron and Delta with the impact of vaccine booster dose. Phys. Scr. 99(1) (2024) 015201.
[29] A. Biswas, D. Chakraborty, M. H. A. Biswas, A. Ghosh, A. Banerjee, D. Raut. A new Caputo-type fractional-order model for the dynamics of malaria transmission with impact of temperature. J. Appl. Math. Comput. 71 (2024) 783–812.
[30] M. Farman, C. Xu, A. Shehzad, S. Asghar, K. S. Nisar. A novel COVID-19 model with fractional operator of Atangana-Baleanu type and memory effect. Math. Comput. Simul. 219 (2024) 1040–1056.
[31] A. Ghosh, D. Chakraborty, S. Mukhopadhyay, A. Saha. Modelling the impact of temperature and rainfall on the dynamics of COVID-19 using fractal-fractional differential equations. J. Appl. Math. Comput. 71 (2024) 813–846.
[32] A. Akgül, M. Farman, K. S. Nisar. Study of the impact of climatic factors on COVID-19 transmission using a fractal-fractional order model. Math. Comput. Simul. 222 (2024) 114–131.
[33] R. Sharma, A. Biswas, D. Chakraborty, M. H. A. Biswas. Modelling the COVID-19 pandemic in India using fractal-fractional operators with Atangana–Baleanu derivative. Int. J. Model. Simul. 44(2) (2024) 129–144.
[34] M. Farman, A. Akgül, K. S. Nisar. A fractal-fractional order model for the analysis of polio virus transmission with vaccination impact. Chaos Solitons Fractals 178 (2023) 113864.
[35] N. Muhammad, M. Farman, A. Akgül. Mathematical modeling and numerical analysis of cholera dynamics with Caputo–Fabrizio fractional operator. Comput. Appl. Math. 43(3) (2024) 85.
[36] M. Farman, K. S. Nisar, A. Akgül. Study of COVID-19 model with isolation and treatment by using Caputo-Fabrizio fractional operator. Alex. Eng. J. 63 (2024) 133–147.
[37] A. Ghosh, S. Biswas, D. Chakraborty. A fractional mathematical model to study the transmission dynamics of seasonal influenza in the presence of quarantine. Nonlinear Dyn. 110 (2024) 1239–1263.
[38] M. Farman, A. Shehzad, C. Xu. A fractal-fractional order model of COVID-19 with Caputo derivative and varying contact rate. Math. Comput. Simul. 223 (2024) 135–149.
[39] M. Farman, K. S. Nisar, A. Akgül. Modeling and analysis of Ebola virus transmission with memory effect using a fractional order model. Chaos Solitons Fractals 179 (2023) 113889.
[40] M. Farman, C. Xu, A. Shehzad. Modeling and numerical analysis of Leishmaniasis disease with memory effect using Caputo fractional derivative. Math. Comput. Simul. 226 (2024) 96–113.
[41] N. Muhammad, M. Farman, A. Akgül. Mathematical model for forecasting and controlling COVID-19 using fractional calculus and memory kernel approach. J. Comput. Appl. Math. 432 (2024) 115276.