Quantum Simulation of Cold Fusion in the Medium of Superfluid Helium

Authors

  • Makar A K Plasma Science Society of India, Gandhinagar:382428,Gujarat, India Author

DOI:

https://doi.org/10.48165/jntas.2025.13.1.7

Keywords:

Cold fusion, Quantum simulation, Bose-Einstein condensation, Superfluid helium

Abstract

The present paper explores the quantum simulation of cold fusion phenomena  using superfluid helium. Leveraging the unique properties of superfluid helium,  such as ultracold temperatures and stability, an approach has been taken to simu late D-D nuclear fusion relevant to cold fusion scenarios with Quantum Monte  Carlo Methods and Density Functional Theory.Furthermore the present study  investigates quantum degeneracy effects, including Bose-Einstein condensation  and superfluidity that influence reaction dynamics and product distributions. Based on computational simulations and theoretical analysis the interplay be tween nuclear dynamics and quantum phenomena in cold fusion has been eluci dated.The present study proposes a promising approach to unlock the mysteries  of cold fusion research and realizing practical fusion energy applications. 

  

 

 

References

Abid, M., Huepe, C., Metens, S., Nore, C., Pham, C., & Tuckerman, L. (2003). Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence. Fluid Dynamics Research, 33(5–6), 509.

Acioli, P. (1997). Review of quantum Monte Carlo methods and their applications. Journal of Molecular Structure, 394(2–3), 75.

Anderson, A., & Jones, S. (1991). Comment on an experiment at Yale on cold fusion. AIP Conference Proceedings, 228(1), 24.

Andronikashvili, E., & Mamaladze, Y. (1966). Quantization of macroscopic motions and hydrodynamics of rotating helium II. Reviews of Modern Physics, 38(4), 567.

Aygun, M. (2020). The effect of temperature on fusion cross sections of the ⁸B proton halo nucleus. Turkish Journal of Physics, 44(1), 39.

Baxi, C., & Wong, C. (2000). Review of helium cooling for fusion reactor applications. Fusion Engineering and Design, 51–52, 319.

Berlinguette, C., Chiang, Y., Munday, J., Schenkel, T., Fork, D., & Koningstein, R. (2019). Revisiting the cold case of cold fusion. Nature, 570(7759), 45.

Bewley, G., Paoletti, M., Sreenivasan, K., & Lathrop, D. (2008). Characterization of reconnecting vortices in superfluid helium. Proceedings of the National Academy of Sciences, 105(37), 13707.

Biben, T., & Frenkel, D. (2002). Density functional approach to helium at finite temperature. Journal of Physics: Condensed Matter, 14(40), 9077.

Braaten, E., Hammer, H., & Lepage, G. (2017). Lindblad equation for the inelastic loss of ultracold atoms. Physical Review A, 95(1), 1.

Brewer, D., Edwards, D., & Mendelssohn, K. (1955). The entropy of superfluid helium. Proceedings of the Physical Society A, 68(10), 939.

Bulusu, S., & Fournier, R. (2012). Density functional theory guided Monte Carlo simulations: Application to melting of Na₁₃. Journal of Chemical Physics, 136, 6.

Busch, P., Heinonen, T., & Lahti, P. (2007). Heisenberg’s uncertainty principle. Physics Reports, 452(6), 155.

Cao, C., An, Z., Hou, S., Zhou, D., & Zeng, B. (2022). Quantum imaginary time evolution steered by reinforcement learning. Communications Physics, 5, 57.

Carlson, J., Gandolfi, S., & Gezerlis, A. (2012). Quantum Monte Carlo approaches to nuclear and atomic physics. Progress of Theoretical and Experimental Physics, 1, 1.

Carlson, J., Gandolfi, S., Pederiva, F., Pieper, S., Schiavilla, R., & Schmidt, K. (2015). Quantum Monte Carlo methods for nuclear physics. Reviews of Modern Physics, 87(3), 1067.

Castin, Y., Sinatra, A., & Kurkjian, H. (2019). Landau phonon–roton theory revisited for superfluid ⁴He and Fermi gases. Physical Review Letters, 119(26), 1.

Cetin, N., Pavelka, M., & Varga, E. (2025). A geometric one-fluid model of superfluid helium-4. International Journal of Engineering Science, 217(1), 1.

Chubb, T. (2005). The DD cold fusion–transmutation connection. ICCF-10 Proceedings, World Scientific, 753.

Chung, Y., & Green, W. (2025). New modified Arrhenius equation to describe the temperature dependence of liquid phase reaction rates. Chemical Engineering Journal, 516, 1.

Dalfovo, F., Lastri, A., Pricaupenko, L., Stringari, S., & Treiner, J. (1995). Structural and dynamical properties of superfluid helium: A density-functional approach. Physical Review B, 52(2), 1193.

Darve, C., Bottura, L., Patankar, N., & Sciver, S. (2012). A method for numerical simulation of superfluid helium. AIP Conference Proceedings, 1434, 247.

Drummond, N., Towler, M., & Needs, R. (2004). Jastrow correlation factor for atoms, molecules, and solids. Physical Review B, 70(23), 1.

Engel, A., & Goodyear, C. (1961). Fusion cross-section measurements with deuterons of low energy. Proceedings of the Royal Society A, 264(1319), 445.

Feng, S. (1989). Enhancement of cold fusion rate by electron polarization in palladium deuterium solid. Solid State Communications, 72(2), 205.

Feynman, R. (1954). Atomic theory of the two-fluid model of liquid helium. Physical Review, 94(2), 262.

Fleischmann, M., & Pons, S. (1989). Electrochemically induced nuclear fusion of deuterium. Journal of Electroanalytical Chemistry, 261(2), 301.

Gaiduk, A., & Staroverov, V. (2010). Explicit construction of functional derivatives in potential-driven density-functional theory. Journal of Chemical Physics, 133, 10.

Gao, Z., Liu, S., Wen, P., Liao, Z., Yang, Y., & Su, J. (2024). Constraining the Woods–Saxon potential in fusion reactions based on neural networks. Physical Review C, 109(2), 1.

Gessner, O., & Vilesov, A. (2019). Imaging quantum vortices in superfluid helium droplets. Annual Review of Physical Chemistry, 70, 173.

Glaberson, W., & Schwarz, K. (1987). Quantized vortices in superfluid helium-4. Physics Today, 40(2), 54.

Gogate, D., & Pathak, P. (1946). The Landau velocity in liquid helium II. Proceedings of the Physical Society, 59, 457.

Hecht, E. (2009). Einstein on mass and energy. American Journal of Physics, 77(9), 799.

Hirshberg, B., Rizzi, V., & Parrinello, M. (2019). Path integral molecular dynamics for bosons. Proceedings of the National Academy of Sciences of the U.S.A.116(43): 21445.

Hofmann, S. (2011). Synthesis of superheavy elements by cold fusion. Radiochimica Acta, 99(7–8), 405.

Huang, K., & Klein, A. (1964). Phonons in liquid helium. Annals of Physics, 30(2), 203.

Ichibha, T., Neufeld, V., Hongo, K., Maezono, R., & Thom, A. (2022). Making the most of data: Quantum Monte Carlo postanalysis revisited. Physical Review E, 105, 4.

Iliadis, C., Longland, R., Coc, A., Timmes, F., & Champagne, A. (2015). Statistical methods for thermonuclear reaction rates and nucleosynthesis simulations. Journal of Physics G: Nuclear and Particle Physics, 42, 3.

Jose, J., & Jawahar, C. (2021). Experimental studies on cold fusion nuclear reaction process using different electrodes. Materials Today: Proceedings, 47(19), 6766.

Joseph, I., Shi, Y., Porter, M., Castelli, A., Geyko, V., & Graziani, F. (2023). Quantum computing for fusion energy science applications. Physics of Plasmas, 30, 010501.

Kennedy, A., & Pendleton, B. (1991). Acceptances and autocorrelations in hybrid Monte Carlo. Nuclear Physics B: Proceedings Supplements, 20, 118.

Kent, P., Annaberdiyev, A., Benali, A., Bennett, M., Borda, E., & Doak, P. (2020). QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion quantum Monte Carlo. Journal of Chemical Physics, 152, 17.

Khanna, K., & Singh, S. (1985). Landau parameters and thermodynamic properties of liquid helium II. Journal of Low Temperature Physics, 60(5–6), 395.

Kim, J., Baczewski, A., Beaudet, T., Benali, A., Bennett, M., & Berrill, M. (2018). QMCPACK: An open-source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules, and solids. Journal of Physics: Condensed Matter, 30, 195901.

Kobe, D. (1972). Gross–Pitaevskii equation for a strongly interacting superfluid boson system. Physical Review A, 5(2), 854.

Kopyciński, J., Parisi, L., Parker, N., & Pawłowski, K. (2023). Quantum Monte Carlo–based density functional for one-dimensional Bose–Bose mixtures. Physical Review Research, 5, 023050.

Kozima, H. (1998). The cold fusion phenomenon. International Journal of Society of Materials Engineering for Resources, 6(1), 68.

Kozima, H. (2011). Physics of the cold fusion phenomenon. Proceedings of ICCF, 13, 1.

Kozima, H. (2013). The cold fusion phenomenon: What is it? Proceedings of JCF, 14, 203.

Kuo, W., & Uppuluri, V. (1983). A review of error propagation analysis in systems. Microelectronics Reliability, 23(2), 235.

Landau, L. (1941). Theory of the superfluidity of helium II. Physical Review, 60, 356.

Learn, R., Varga, E., Vadakkumbatt, V., & Davis, J. (2022). Precision measurements of the zero-temperature dielectric constant and density of liquid ⁴He. Physical Review B, 106(21), 1.

Lewan, M. (2016). Cold fusion: An impossible invention? World Affairs, 20(4), 122.

Liboff, R. (1994). Feasibility of heavy-boson superconductivity. Physics Letters A, 186(1–2), 167.

Long, A., & Eloranta, J. (2021). Density functional theory of superfluid helium at finite temperatures. Journal of Chemical Physics, 155(7), 9077.

Lys, J., & Lyons, L. (1965). The deuteron–deuteron interaction at 270 to 507 MeV/c. Nuclear Physics, 74(2), 261.

Maestro, A., Nichols, N., Prisk, T., Warren, G., & Sokol, P. (2022). Experimental realization of one-dimensional helium. Nature Communications, 13, 3168.

Makar, A. (2025). A quantum mechanical aspect of cold fusion. Journal of Physical Science Innovations, 1(1), 61.

Mason, E., & Rice, W. (1954). The intermolecular potentials of helium and hydrogen. Journal of Chemical Physics, 22(3), 522.

McAllister, J. (1992). Competition among scientific disciplines in cold nuclear fusion research. Science in Context, 5(1), 17.

Mehl, J., & Zimmermann, W. (1968). Flow of superfluid helium in a porous medium. Physical Review, 167(1), 214.

Mermin, N., & Lee, D. (1976). Superfluid helium-3. Scientific American, 235(6), 56.

Michelis, C., & Reatto, L. (1974). How good can Jastrow wavefunctions be for liquid helium four? Physics Letters A, 50(4), 275.

Mills, R. (2001). The nature of free electrons in superfluid helium—a test of quantum mechanics and a basis to review its foundations and make a comparison to classical theory. International Journal of Hydrogen Energy, 26(10), 1059.

Mohamed, Z., Kim, Y., Knauer, J., & Rubery, M. (2023). γ-to-neutron branching ratio for deuterium–tritium fusion determined using high-energy-density plasmas and a fused silica Cherenkov detector. Physical Review C, 107, 1.

Montanaro, A. (2015). Quantum speedup of Monte Carlo methods. Proceedings of the Royal Society A, 471, 2181.

Nagai, Y., Okumura, M., Kobayashi, K., & Shiga, M. (2020). Self-learning hybrid Monte Carlo: A first-principles approach. Physical Review B, 102, 4.

Nakatsukasa, T., Ebata, S., Avogadro, P., Guo, L., Inakura, T., & Yoshida, K. (2012). Density functional approaches to nuclear dynamics. Journal of Physics: Conference Series, 387, 012015.

Ondir, F., & De, A. (2021). Preliminary survey on cold fusion: It’s not pathological science and may require revision of nuclear theory. Journal of Electroanalytical Chemistry, 903, 115871.

Pieri, P., & Strinati, G. (2003). Derivation of the Gross–Pitaevskii equation for condensed bosons from the Bogoliubov–de Gennes equations for superfluid fermions. Physical Review Letters, 91(3), 1.

Pines, V., Pines, M., Chait, A., Steinetz, B., Forsley, L., & Hendricks, R. (2020). Nuclear fusion reactions in deuterated metals. Physical Review C, 101(4), 1.

Poluektov, Y. (2021). Nuclear and electronic coherence in superfluid helium. Low Temperature Physics, 47(8), 693.

Raouf, M., Elgendy, A., & Youssef, A. (2022). Cold fusion based on matter–antimatter plasma formed in molecular crystals. Journal of High Energy Physics, Gravitation and Cosmology, 8(2), 56.

Rowlinson, J. (2007). The Maxwell–Boltzmann distribution. Molecular Physics, 103(21–23), 2821.

Sankovich, D. (2010). Bogolyubov’s theory of superfluidity. Physics of Particles and Nuclei, 41(7), 1068.

Sasaki, S. (2009). Evaluation of specific heat for superfluid helium between 0–2.1 K based on nonlinear theory. Journal of Physics: Conference Series, 150, 032091.

Schunck, N. (2013). Density functional theory approach to nuclear fission. Acta Physica Polonica B, 44(3), 263.

Simenel, C. (2012). Nuclear quantum many-body dynamics. European Physical Journal A, 48(11), 1.

Simko, T., & Gray, M. (2014). Lunar helium-3 fuel for nuclear fusion: Technology, economics, and resources. World Future Review, 6(2), 158.

Singh, V., Lahiri, J., & Basu, D. (2019). Theoretical exploration of S-factors for nuclear reactions of astrophysical importance. Nuclear Physics A, 987, 260.

Smorodin, A., Rybalko, A., & Konstantinov, D. (2017). Measurements of the complex permittivity of liquid helium-4 in the millimeter wave range by a whispering gallery mode resonator. Journal of Low Temperature Physics, 187(5–6), 361.

Song, S., Vuckovic, S., Sim, E., & Burke, K. (2022). Density-corrected DFT explained: Questions and answers. Journal of Chemical Theory and Computation, 18, 2.

Sorongane, E. (2022). Implementation of a classical theory for superfluids. Open Journal of Applied Sciences, 12, 1254.

Szalewicz, K., Morgan, J., & Monkhorst, H. (1989). Fusion rates for hydrogen isotopic molecules of relevance for cold fusion. Physical Review A, 40(5), 2824.

Tabet, E., & Tenenbaum, A. (1990). A dynamical model for cold fusion in deuterated palladium. Fusion Technology, 18(1), 143.

Tanabe, K. (2016). Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion. Heliyon, 2(1), 1.

Tang, Y., Guo, W., Kobayashi, H., Yui, S., Tsubota, M., & Kanai, T. (2023). Imaging quantized vortex rings in superfluid helium to evaluate quantum dissipation. Nature Communications, 14, 2941.

Temmerman, G. (2021). The helium bubble: Prospects for ³He-fuelled nuclear fusion. Joule, 5(6), 1312.

Thomas, A., & Melnitchouk, W. (1998). Deuteron structure functions in the context of few-body physics. Nuclear Physics A, 631, 296.

Toennies, J., Vilesov, A., & Whaley, K. (2001). Superfluid helium droplets: An ultracold nanolaboratory. Physics Today, 54(2), 31.

Trachenko, K. (2023). Microscopic dynamics and Bose–Einstein condensation in liquid helium. Journal of Physics: Condensed Matter, 35(8), 1.

Venturi, D., & Dektor, A. (2021). Spectral methods for nonlinear functionals and functional differential equations. Research in Mathematical Sciences, 8, 27.

Vilchynskyy, S., Yakimenko, A., Isaieva, K., & Chumachenko, A. (2013). The nature of superfluidity and Bose–Einstein condensation: From liquid ⁴He to dilute ultracold atomic gases (Review article). Low Temperature Physics, 39(9), 724.

Vuckovic, S., Song, S., Kozlowski, J., Sim, E., & Burke, K. (2019). Density functional analysis: The theory of density-corrected DFT. Journal of Chemical Theory and Computation, 15, 12.

Wu, C. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Annals of Statistics, 14(4), 1261.

Yang, Y. (2025). The role of quantum computing in advancing plasma physics simulations for fusion energy and high-energy applications. Frontiers in Physics, 13, 1.

Zhang, D., Zhu, Y., Zhao, Y., Yan, H., & Zhu, S. (2019). Topological quantum matter with cold atoms. Advances in Physics, 67(4), 253.

Downloads

Published

2025-12-17

How to Cite

Quantum Simulation of Cold Fusion in the Medium of Superfluid Helium. (2025). Journal of Nuclear Technology in Applied Science, 13(1), 65-89. https://doi.org/10.48165/jntas.2025.13.1.7