CHEMICAL SYNTHESIS OF COPPER NANOPARTICLE AND ITS EFFICACY AGAINST IN-VITRO PHYTOPHTHORA NICOTIANAE

Authors

  • Ashwini D Savalkar Biotechnology Centre, Department of Agril. Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola
  • M P Moharil Biotechnology Centre, Department of Agril. Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola
  • R B Ghorade Sorghum Research Station, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, India
  • Y V Ingle AICRP on Fruits, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, India
  • S B Sakhare Biotechnology Centre, Department of Agril. Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola
  • A K Gade Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai
  • A P Ingle Biotechnology Centre, Department of Agril. Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola
  • P V Jadhav Biotechnology Centre, Department of Agril. Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola

DOI:

https://doi.org/10.48165/jpds.2025.20.01.06

Keywords:

Antifungal efficacy, Copper nanoparticle, Phytophthora nicotianae

Abstract

Various Phytophthora species have long been associated with different citrus diseases, including gummosis, root rot, fruit brown rot, and citrus decline worldwide, including in India. Among these, Phytophthora parasitica has gained considerable attention due to its significant role in causing citrus gummosis, a major factor contributing to yield losses. Studies have shown that P. parasitica can lead to approximately 10–30% yield reduction due to gummosis. Considering this impact, the present study aims to synthesize copper nanoparticles (CuNPs) and evaluate their antifungal efficacy against P. parasitica. Due to their large specific surface area and low cost, copper nanoparticles have garnered substantial interest. In this study, CuNPs were successfully synthesized using a novel, simple method based on the chemical reduction of aqueous copper salt at low temperatures (80 °C), with ascorbic acid acting as a reducing agent. The maximum absorbance at 340 nm in the UV-Vis spectroscopic analysis confirmed the presence of CuNPs in the reaction mixture. Efficacy experiments revealed that CuNPs at 50 ppm and 100 ppm concentrations significantly inhibited the mycelial growth of P. parasitica by 59.25% and 100%, respectively. Overall, the present study highlights the potential of synthesized CuNPs as a nano-fungicide at low concentrations, offering an eco-friendly alternative to synthetic fungicides and helping to reduce harmful environmental impacts.

References

1. AlHarethi, A.A., Q.Y. Abdullah, H.J. AlJobory, A.M. Anam, R. A. Arafa and K.Y. Farroh, 2024.

2. Banik, S. and A. Perez-de-Luque, 2017. Spanish Journal of Agricultural Research, 15(2): 1005–1005.

3. Bowman, K. D., U. Albrecht, J. H. Graham and D. Bright, 2007. Detection of Phytophthora palmivora in citrus roots using PCR-RFLP. European Journal of Plant Pathology, 119: 143–158.

4. Burketova, L., L. Trda, P. G Ott, and O. Valentova, 2015. Bio-based resistance inducers. Advances in Materials Science and Engineering, (1): 8100440.

5. Chen, J. N., L. T. Wu, K. Song, Y. S. Zhu, and D. Wei, 2022. Journal of Integrative Agriculture, 21(11): 3245–3262.

6. Cioffi, N., L. Torsi, N. Ditaranto, G. Tantillo, et al., 2005. The Journal of Physical Chemistry B, 107(3): 668–677.

7. Civardi, C., M.A. Schubert, T. Fey, P. Wick and F.W.M. Schwarze, 2015. Micronized copper wood preservatives. PLOS ONE, 10(11): e0142578.

8. Das, A.K., Nerkar, S.A.S. Kumar and Bawage, 2016. International Journal of Electrochemical Science, 9(12): 8189–8198.

9. Elmer, W. and J.C. White, 2018. Annual Review of Phytopathology, 56(1): 111–133.

10. Erwin, D.C. and Ribeiro, 1996. Compendium of Citrus Diseases, St. Paul, MN: APS Press, pp. 12–15.

11. Faundez, G., G. Troncoso, M.P. Navarrete, and Figueroa, 2004. BMC Microbiology, 4:19.

12. Fatma, S., P. Kalainila, R. Ravindran, and R. Renganathan, 2017. Asian Journal of Pharmaceutical and Clinical Research, 7(1): 243–2491.

13. Ghibelli, L., L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P.G. Zambonin and E. Traversa, 2005. Chemistry of Materials, 17(21): 5255–5262.

14. Graham, J.H. and J.A. Menge, 2000. Compendium of Citrus Diseases, St. Paul, MN: APS Press, pp. 12–15.

15. Han, W.K., H.S. Choi, S.G. Hwang, J.S. Hong, J.W. Lee and Y.S. Kang, 2006. Applied Surface Science, 252(8): 2832–2838.

16. Hanemann, T. and D. Szabo, 2010. Materials, 3(6): 3468–3517.

17. Hajizadeh, Y.S., N.E.M. Harzandi, Babapour, R. Yazdanian, and R. Ranjbar, 2022. Iranian Journal of Propolis, Vol. Unknown.

18. Ho, H.H., 2018. The taxonomy and biology of Phytophthora and Pythium. J. Bacteriol. Mycol. Open Access, 6: 40–45.

19. Kelly, K.L., Coronado, E.L.G., Zhao and Schatz, G.C., 2003. The Journal of Physical Chemistry B, 107(3): 668–677.

20. Khan, A., Y. Rashid, A. Younas and R. Chong, 2016. Nano Letters International, Issue unknown.

21. Khanehzaei, H., M.B. Ahmad, M.Z. Shameli and K. Ajdari, 2014. Journal of Nanomaterials, Seaweed media.

22. Kim, H.S., D.E. Dhage, J.H. Shim and H.T. Hahn, 2009. Applied Physics A, Vol. unknown.

23. Le, D.T., T.P.T. Tran, T.N.A. Le, Q.N. Tran, H.Q. Nguyen and D.D. Bui, 2024. Green Chemistry, Vol. unknown.

24. Lee, Y., K.J. Choi, N.E. Lee, D. Stott and J.R. Kim, 2008. Asian Journal of Pharmaceutical and Clinical Research, pp. 79–83.

25. Liu, Q.M., K. Yasunami, T. Kuruda and M. Okido, 2012. Transactions of Nonferrous Metals Society of China, 22(9): 2198–2203.

26. Longano, D., N. Ditaranto, L. Sabbatini, L. Torsi and N. Cioffi, 2012. Nano-Antimicrobials: Progress and Prospects, pp. 85–117.

27. Mali, S.C., A. Dhaka, C.K. Githala and R. Trivedi, 2020. Biotechnology Reports, 27: e00518.

28. Mali, S.C., S. Raj and R. Trivedi, 2019. Journal info missing.

29. Perez-Alvarez, M., G.O. Cadenas-Pliego, V.E. Camacho-Perez, J. Comparan-Padilla, J. Cabello-Alvarado and E. Saucedo-Salazar, 2021. Polymers, 13(12): 1906.

30. Ponce, A.A. and K.J. Klabunde, 2005. Journal of Microbiology and Applied Sciences, 6(7): 2395–2400.

31. Raffi, M., M. Mehrwan, J.I. Bhatti, T.M. Akhter, H. Hameed, W. Yawar and M.M. ulHasan, 2010. Annals of Microbiology, 60: 75–80.

32. Savalkar, A.D., M.P. Moharil, R.B. Ghorade, Y.V. Ingle, S.B. Sakhare, P.P. Gade, B. Ingle, B.A.K. Turakhia and M.B. Shah, 2020. Journal of Coatings Technology and Research, 17: 531–540.

33. Savita, G.S.V. and A. Nagpal, 2012. GERF Bulletin of Biosciences, 3(1): 18–27.

34. Shameli, K., M.E. Bin Ahmad, N.A. Jaffar, A.P. Al-Mulla, N. Ibrahim, S. Shabanzadeh, Y.S. Rustaiyan and S. S. Macromolecules, 156: 1387–1395.

35. Singh, P., R.R. Katyal, A. Kalra and A. Chandra, 2008. Tetrahedron Letters, 49(4): 727–730.

36. Stephenson, G.R., J.R. Coats, H. Yamamoto, 2001. Expert Committee on Weeds, Citeseer, pp. 9–15.

37. Thai, M.T., T.N.D. Duong, X.C. Nguyen, T.P.P. Nguyen and H.T. Nguyen, 2018. Journal of Technical Education Science, 13(2): 54–59.

38. Thakre, B., U.C.L. Soni and Gour, 2017. Biochemistry and Biophysics Reports, 20: p.100699

39. Tilman, D., K.G. Cassman, P.A. Matson, R. Naylor and S. Polasky, 2002. Nature, 418(6898): 671–677.

40. Timmer, L.W., S.E. Zitko, R.J. Gottwald and J.H. Graham, 2000. Plant Disease, 84(2): 157–163.

41. Vanti, G.L., S.M. Masaphy, B. Kurjogi, S. Chakrasali and V.B. Nargund, 2020. Journal of Plant Disease Sciences, 19(2): 111–115.

42. Verniere, C., S. Cohen, P. Raffanel, M. Dubois, B. Venard and F. Panabieres, 2004. Phytopathology, 152(8&9): 476–483.

43. Vincent, J.M., 1947. Distortion of fungal hyphae. Nature, 159.

44. Wei, X., B.Y. Zhu and X. Xu, 2005. Colloid and Polymer Science, 284: 102–107.

Published

2025-07-10

How to Cite

CHEMICAL SYNTHESIS OF COPPER NANOPARTICLE AND ITS EFFICACY AGAINST IN-VITRO PHYTOPHTHORA NICOTIANAE. (2025). Journal of Plant Disease Sciences, 20(1), 26-31. https://doi.org/10.48165/jpds.2025.20.01.06