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ARTICLE INFO ABSTRACT

The rapid growth of urbanization and environmental stress has intensified the 
need for precise, scalable, and timely impact assessment tools. Remote sensing 
(RS) imagery, with its ability to provide spatial and temporal data across large 
extents, has become central to monitoring land surface changes. In recent years, 
the integration of machine learning (ML) techniques with remote sensing has 
transformed how environmental and urban impacts are assessed, offering more 
accurate classifications, predictive capabilities, and dynamic monitoring. This 
review explores the current landscape of ML-based methodologies applied to RS 
imagery in the context of environmental degradation, urban expansion, land use/
land cover (LULC) change, vegetation health, and disaster impact evaluation. It 
provides a comparative assessment of commonly used algorithms such as Support 
Vector Machines, Random Forest, Artificial Neural Networks, and emerging deep 
learning models like Convolutional Neural Networks. The study examines how these 
methods are applied across diverse datasets—Landsat, Sentinel, UAV imagery and 
highlights their performance in detecting subtle and complex landscape changes. 
The review also identifies promising trends, including explainable AI, integration 
with GIS-based spatial analytics, and real-time processing via cloud platforms. 

Introduction

Importance of Impact Assessment
Impact assessment plays a critical role in understanding 
the consequences of human activities and natural pro-
cesses on the environment and built landscapes. As urban-
ization accelerates and environmental pressures intensify, 

it becomes essential to evaluate how land use changes, 
infrastructure development, and resource extraction affect 
ecological balance, water systems, vegetation cover, and 
overall sustainability (Glasson et al., 2012). Through sys-
tematic impact assessment, decision-makers can identify 
areas of concern, measure the effectiveness of interven-
tions, and implement corrective or preventive mea-
sures (Morgan, 2012). In both environmental and urban  
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studies, impact assessment provides the foundation for 
evidence-based planning and policy formulation. It sup-
ports sustainable development by ensuring that short-term 
gains do not compromise long-term ecological health or 
community resilience (Partidário & Sheate, 2013). When 
combined with remote sensing and geospatial tools, impact 
assessments gain a spatial and temporal dimension, allow-
ing for detailed mapping, monitoring, and forecasting of 
changes over time (Lu et al., 2011). This not only enhances 
the precision of evaluation but also empowers planners to 
visualize potential outcomes and make informed decisions.

Role of Remote Sensing and GIS in 
Impact Assessment
Remote sensing (RS) and Geographic Information Systems 
(GIS) have revolutionized the way spatial and temporal data 
are collected, analyzed, and interpreted for environmental 
and urban studies. RS provides consistent and repetitive 
coverage of the Earth’s surface, enabling the detection of 
land surface changes, vegetation dynamics, urban expan-
sion, and hydrological alterations over time (Chuvieco & 
Huete, 2009). When integrated with GIS, this information 
becomes spatially contextualized, allowing for layered anal-
ysis, modeling, and visualization essential for impact assess-
ment. The ability of RS to monitor vast and often inaccessible 
areas makes it particularly valuable for detecting changes 
caused by infrastructure development, deforestation, agri-
cultural expansion, and watershed interventions (Weng, 
2012). Multispectral and hyperspectral satellite imagery, 
combined with high-resolution UAV data, can capture fine-
scale details relevant to land use and land cover (LULC) 
classification and change detection. GIS further supports 
this by managing spatial databases, performing proximity 
and overlay analyses, and generating decision-support out-
puts for planners and stakeholders (Longley et al., 2015).

In the context of impact assessment, RS and GIS help 
quantify both biophysical and anthropogenic impacts, 
offering tools to assess environmental degradation, urban 
sprawl, flood risk, and the effectiveness of conservation 
or watershed programs (Jensen, 2015). Their integration 
enables multi-temporal assessments, supports machine 
learning applications, and fosters a data-driven approach 
to environmental planning and policy formulation.

Integration and Use of ML for Impact 
Assessment
The integration of machine learning (ML) techniques 
with remote sensing (RS) image analysis has significantly 

enhanced the accuracy and efficiency of environmental 
and urban impact assessments. Traditional methods of 
image classification often rely on rigid statistical rules 
and subjective interpretation, which may fail to capture 
the complexity of heterogeneous landscapes (Foody & 
Mathur, 2004). ML algorithms, on the other hand, can 
process large volumes of multispectral or hyperspectral 
data and identify patterns that are not easily discern-
ible through conventional approaches. Commonly used 
supervised ML classifiers such as Random Forest (RF), 
Support Vector Machine (SVM), and Artificial Neural 
Networks (ANN) have demonstrated high performance in 
land use/land cover (LULC) classification, change detec-
tion, and anomaly identification (Pal & Mather, 2005; 
Belgiu & Drăguţ, 2016). These models are particularly 
valuable in impact assessment studies where spatial and 
temporal precision is critical for evaluating post-inter-
vention changes in land condition, vegetation health, or 
built-up expansion. Recent advancements in deep learn-
ing, especially Convolutional Neural Networks (CNNs), 
have further improved feature extraction and classifica-
tion accuracy, enabling more robust impact assessments 
using high-resolution satellite and drone imagery (Zhu 
et al., 2017). Additionally, the integration of ML within 
GIS platforms allows for spatially explicit modeling and 
predictive mapping, supporting more informed deci-
sion-making in watershed planning, resource manage-
ment, and urban development.

Aim & Scope of the Review
This review aims to synthesize and critically examine 
the role of machine learning techniques in remote sens-
ing-based impact assessment, with a focus on environmen-
tal and urban studies. It highlights how ML algorithms have 
advanced image analysis for monitoring land use changes, 
urban growth, vegetation dynamics, and the outcomes of 
developmental interventions.

The scope of the review includes a comparative over-
view of commonly used ML models—such as Random 
Forest, Support Vector Machines, Artificial Neural 
Networks, and Convolutional Neural Networks—and 
their applications in analyzing satellite and UAV imagery. 
The paper also addresses the integration of these methods 
within GIS platforms for spatial modeling and prediction. 
By covering key data sources, methodological approaches, 
and real-world applications, this review serves as a guide 
for researchers, planners, and policymakers seeking effi-
cient tools for evidence-based environmental and urban 
impact assessment.
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Machine Learning Techniques in Use
Supervised vs. Unsupervised 
Approaches
Machine learning (ML) techniques have emerged as indis-
pensable tools in the processing and interpretation of 
remote sensing (RS) imagery, especially for impact assess-
ment in environmental and urban studies. These tech-
niques can be broadly categorized into supervised and 
unsupervised learning methods, each offering distinct 
advantages based on data availability, complexity, and the 
nature of the analysis.

Supervised Learning Approach

Supervised learning involves training a model using a 
dataset that contains input-output pairs, where each input 
(usually pixel or feature vector) is associated with a known 
class label. The algorithm learns the relationships between 
features and classes, allowing it to classify new, unseen data 
with high accuracy. This approach is particularly effective 
in land use/land cover (LULC) classification, change detec-
tion, and post-impact evaluation where reliable ground 
truth or training samples are available. Popular super-
vised ML algorithms include: a) Maximum Likelihood 
Classification (MLC): One of the oldest and most widely 
used parametric methods. It assumes that the data for 
each class in each band are normally distributed and uses 
Bayesian probability to assign pixels to the class with the 
highest likelihood. MLC performs well when spectral 
classes are statistically separable (Richards & Jia, 2006)., b) 
Minimum Distance Classifier (MDC): Assigns each pixel 
to the class whose mean spectral signature is closest to 
that pixel’s signature in multidimensional space. It is fast 
and simple but may produce poor results in overlapping 
spectral classes (Lillesand et al., 2015), c) Parallelepiped 
Classification: Defines a spectral range “box” for each 
class. A pixel falling within a box is assigned to that class. 
While computationally efficient, this method struggles 
with spectral confusion and mixed pixels (Jensen, 2015)., 
d) Mahalanobis Distance Classification: Similar to MDC
but incorporates class variance–covariance structure. It
is more sensitive to class variability and typically outper-
forms simple distance-based classifiers where class distri-
butions differ significantly (Richards & Jia, 2006).

2.1.2 Unsupervised Learning Approach

Unsupervised classification involves no prior knowledge or 
training data. Instead, the classification algorithm examines the 

spectral properties of the image and groups pixels into clusters 
that share similar characteristics. The user then interprets and 
labels these clusters post-classification, often with the help of 
ancillary data. Common unsupervised classification sub meth-
ods include: a) K-Means Clustering: A partitioning method that 
divides the dataset into k clusters by minimizing the variance 
within each cluster. It is widely used due to its simplicity and 
efficiency in handling large datasets (Xie, 2022). b) ISODATA 
(Iterative Self-Organizing Data Analysis Technique): An exten-
sion of K-Means that allows for dynamic adjustment of the 
number of clusters through merging and splitting based on sta-
tistical criteria, enhancing flexibility in classification (Xie, 2022). 
c) Generative Adversarial Networks (GANs): GANs consist of a
generator and a discriminator network that are trained simul-
taneously. They have been employed for unsupervised feature
learning in remote sensing, enabling improved classification
performance without labeled data (Lin et al., 2016).

2.1.3 Comparative Insights

The choice between supervised and unsupervised classification 
techniques depends on various factors, including the availability 
of labeled data, the complexity of the landscape, and the specific 
objectives of the study. Supervised methods generally offer high-
er accuracy when quality training data is available, while unsu-
pervised methods provide flexibility and are valuable in prelim-
inary analyses or when ground truth data is lacking. In practice, 
hybrid approaches that combine both methods can leverage the 
strengths of each to enhance classification outcomes.

Traditional Machine Learning 
Techniques
Traditional machine learning (ML) algorithms have been 
instrumental in advancing remote sensing image classifi-
cation, particularly for land cover mapping, environmen-
tal monitoring, and disaster assessment. Among these, 
Support Vector Machines (SVM), Random Forest (RF), 
and k-Nearest Neighbors (k-NN) have demonstrated 
robust performance across various applications.

Support Vector Machines (SVM)

SVM is a non-parametric classifier that identifies the optimal 
hyperplane separating different classes in the feature space. It is 
particularly effective in high dimensional spaces and has demon-
strated high accuracy in various remote sensing applications (Pal 
& Mather, 2005). It constructs a decision boundary that max-
imizes the margin between classes. For non-linearly separable 
data, kernel functions such as the Radial Basis Function (RBF) 
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are employed to project data into higher-dimensional spaces 
where linear separation is feasible (Melgani & Bruzzone, 2004).
SVM is effective with small training datasets and high-dimen-
sional data, making it suitable for remote sensing applications 
where labeled data may be limited (Foody & Mathur, 2004).
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Where ω – weight factor, b – bias, εi - slack variables, 
C - regularization parameter.

Random Forest (RF)

RF is an ensemble-based classifier that builds multiple deci-
sion trees using different bootstrapped subsets of data and then 
combines their results through majority voting. It handles large 
datasets with high dimensionality effectively and is less sensi-
tive to overfitting. Each decision tree in the forest is trained on 
a random subset of the data. At each node, a random subset of 
features is selected, and the best split is determined using metrics 
like Gini impurity or entropy. The final output is derived from 
aggregating the predictions of all trees. RF is robust to noise and 
missing values, minimizes overfitting through ensemble averag-
ing, and provides variable importance scores, which can aid in 
identifying relevant features (Rodriguez-Galiano et al., 2012). 
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Where hb(x) is the prediction from the b-th decision 
tree, ŷ is the predicted class label.

K-Nearest Neighbors (K-NN)

K-NN is a non-parametric, instance-based algorithm that clas-
sifies an unknown sample based on the majority class among
its k nearest neighbors in the feature space. It operates under
the assumption that similar data points exist in close proxim-
ity and is commonly used in remote sensing for image classifi-
cation due to its simplicity and effectiveness (Hechenbichler &
Schliep, 2004). In remote sensing, K-NN has shown good results
in classifying land cover using multispectral satellite imagery,
particularly where class boundaries are well defined. However,
its performance may decline in high dimensional datasets due
to the “curse of dimensionality,” making the choice of distance
metrics and feature selection critical. Unlike ensemble models,
K-NN does not require a training phase, but it is computationally 
intensive during classification, especially with large datasets. It
includes flexibility to various remote sensing data sources, inter-
pretability, and ease of implementation; however, to feed ideal
outcomes, the k value must be carefully adjusted (Xie, 2022).
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Select the k smallest distances and their correspond-
ing class labels. Assign x to the most frequent class among 
the k neighbors.

Deep Learning Methods in Remote 
Sensing Based Impact Assessment
The increasing availability of high-resolution Earth obser-
vation data necessitates analytical frameworks capable of 
modeling complex spatial and temporal patterns. Deep 
learning (DL) methods, owing to their hierarchical fea-
ture extraction capabilities and scalability, have emerged as 
transformative tools in environmental impact assessment. 
Their ability to automatically learn abstract representations 
from multispectral, hyperspectral, and temporal datasets 
makes them particularly suitable for remote sensing (RS) 
applications.

Convolutional Neural Networks (CNNs)

CNNs are a class of feedforward deep neural networks 
primarily designed for grid-like data, such as images. 
Their layered architecture—comprising convolutional, 
pooling, and fully connected layers—enables spatial fea-
ture extraction across multiple scales. In remote sensing, 
CNNs are employed for tasks such as land cover classifica-
tion, object detection, and segmentation, especially in very 
high-resolution (VHR) datasets.
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where b is the bias term and (i,j) indexes the spatial 
location of the output. Non-linear activation functions 
such as ReLU are used post-convolution to introduce 
non-linearity. CNNs have demonstrated superior perfor-
mance in scene classification and feature-level fusion, as 
evidenced by their use in Sentinel-2 image classification 
for urban mapping (Zhu et al., 2017).

Long Short – Term Memory Networks (LSTM)

LSTM networks, an extension of traditional RNNs, are 
tailored for sequential data modeling. In remote sensing, 
LSTMs are particularly effective for applications involving 
temporal dependencies—such as crop phenology moni-
toring, vegetation dynamics, and climate impact analysis.
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Where σ denotes the sigmoid activation, and ⊙ 
indicates element-wise multiplication. Each gate controls 
information flow to and from the cell memory ct.

In remote sensing, LSTM architectures have effec-
tively modeled vegetation indices (e.g., NDVI time series) 
for drought assessment using MODIS datasets (Zhang et 
al., 2019).

U-Net for Semantic Segmentation

U-Net is a symmetric convolutional neural architecture orig-
inally proposed for biomedical image segmentation, but it has
found extensive application in RS for pixel-wise classification. Its 
encoder-decoder design enables precise boundary delineation
of landforms and urban features. U-Net has been successfully
applied in high-resolution land cover mapping using WorldView 
imagery, outperforming standard FCNs in both accuracy and
boundary precision (Sherrah, 2016).

( )( )= ⊕ u d sY f f X f

( ) df X denote the feature maps generated through the
downsampling path and uf  represent the upsampling layers. sf  
represents the skip connection from the encoder, and ⊕ denotes 
concatenation. These skip connections are crucial in preserving 
spatial information lost during pooling.

Autoencoders

Autoencoders are unsupervised neural networks that learn 
compressed representations of input data. In remote sensing, 
they are useful for dimensionality reduction, noise filtering, 
and anomaly detection, especially in hyperspectral imagery.
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The encoder f and decoder g.

Stacked autoencoders and sparse variants have shown 
promise in classifying hyperspectral scenes with minimal 
supervision (Masci et al., 2011).

Overview of Remote Sensing Data 
Types in Environmental 
Remote sensing technologies facilitate the acquisition of 
spatially continuous, repetitive, and synoptic observations 
of the Earth’s surface. Depending on the spectral, spatial, 
and temporal resolutions, different remote sensing data 
types are employed in environmental, agricultural, hydro-
logical, and urban studies. Among the most widely utilized 
are multispectral, hyperspectral, LiDAR, and UAV-based 
imagery.

Multispectral Imagery
Multispectral sensors capture image data at discrete and 
relatively broad spectral bands, typically ranging from 
3 to 10 channels across the visible, near-infrared (NIR), 
and short-wave infrared (SWIR) regions. Platforms such 
as Landsat, Sentinel-2, and MODIS provide moderate to 
high-resolution multispectral data widely applied in veg-
etation monitoring, land cover classification, and water 
resource assessment. Multispectral imagery balances 
spectral richness and spatial resolution, enabling long-
term monitoring with consistent radiometric calibration 
(Campbell & Wynne, 2011). Due to its lower dimensional-
ity, multispectral data is computationally efficient for oper-
ational land use studies.

Hyperspectral Imagery
Hyperspectral data comprises hundreds of narrow, con-
tiguous spectral bands, typically spanning from the visible 
to shortwave infrared regions. This high spectral resolu-
tion enables the identification of subtle variations in sur-
face materials and vegetation biochemistry. Each pixel in a 
hyperspectral image contains a complete reflectance spec-
trum, allowing for detailed material discrimination, such 
as soil mineralogy, plant stress detection, and urban surface 
composition (Goetz et al., 1985). However, due to the high 
dimensionality, hyperspectral analysis often requires dimen-
sionality reduction and advanced classification techniques.

Light Detection and Ranging (LiDAR)
LiDAR is an active remote sensing technology that mea-
sures the time delay between emitted and returned laser 
pulses to generate high-resolution three-dimensional rep-
resentations of terrain and objects. It is particularly effective 
for generating Digital Elevation Models (DEMs), vegeta-
tion structure mapping, and urban feature extraction.
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Airborne LiDAR provides vertical accuracy superior 
to passive optical systems and is indispensable in forest 
canopy analysis and floodplain mapping (Lefsky et al., 
2002). The structural nature of LiDAR makes it comple-
mentary to spectral data, especially in heterogeneous land-
scapes.

UAV-Based Imagery
Unmanned Aerial Vehicles (UAVs) have revolutionized 
remote sensing by enabling ultra-high spatial and tempo-
ral resolution data acquisition. Equipped with multispec-
tral, RGB, thermal, or even LiDAR sensors, UAVs are ideal 
for site-specific monitoring, precision agriculture, and 
disaster response. Their low-altitude operation ensures 
sub-decimeter spatial resolution, and the flexibility of 
deployment allows real-time monitoring in dynamic envi-
ronments (Colomina & Molina, 2014). However, UAV data 
is limited by flight regulations, coverage area, and depen-
dence on weather conditions.

Applications of Impact Assessment
Urban Sprawl and Land Use Change
Impact assessment serves as a critical analytical frame-
work for evaluating the consequences of anthropogenic 
transformations on spatial and ecological systems. In the 
context of urban sprawl and land use change, it enables 
the systematic appraisal of how expanding built-up envi-
ronments alter natural landscapes, resource dynamics, and 
ecosystem services. With rapid urbanisation, particularly 
in developing nations, unregulated urban expansion has 
led to encroachment upon agricultural zones, fragmenta-
tion of green spaces, and modification of hydrological pat-
terns (Sudhira et al., 2004). Remote sensing data integrated 
with geospatial analysis has become indispensable in trac-
ing these spatial transitions over time. Temporal satellite 
imagery, when combined with classification algorithms 
and change detection techniques, allows for quantifying 
shifts in land cover, the intensity of sprawl, and its spatial 
configuration (Jat et al., 2008). The application of indices 
such as the Urban Sprawl Index, Shannon’s Entropy, and 
Landscape Fragmentation Metrics facilitates a nuanced 
understanding of spatial disaggregation and land conver-
sion pressures (Herold et al., 2005). Impact assessment in 
this domain not only identifies the magnitude and direc-
tion of change but also supports scenario-based model-
ling to forecast future growth patterns. For instance, the 
integration of GIS with cellular automata or agent-based 
models enables simulation of urban expansion under var-

ious policy or demographic scenarios (Clarke et al., 1997). 
Such approaches inform sustainable land use planning by 
highlighting areas vulnerable to irreversible ecological loss 
or infrastructural strain.In essence, impact assessment acts 
as a scientific lens through which the intricate interplay 
between human settlements and environmental thresholds 
can be deciphered, thereby enabling more resilient and 
equitable urban development strategies.

Impact Assessment in Watershed 
Management: Implications for Natural 
Resources and Environment
Impact assessment in watershed management is a pivotal 
methodological construct, designed to evaluate anthro-
pogenic and climatic influences on interconnected bio-
physical systems within a defined hydrological boundary. 
A watershed, being the fundamental hydrological unit, 
serves as a natural laboratory where interactions among 
land, water, vegetation, and human interventions can be 
systematically examined. Through impact assessment, 
stakeholders can quantify the extent to which devel-
opmental activities, such as agriculture, afforestation, 
urbanization, and water conservation measures, affect 
soil health, water availability, biodiversity, and overall 
ecological equilibrium (Tripathi et al., 2003). The integra-
tion of geospatial technologies with environmental indi-
cators has significantly elevated the analytical capacity of 
watershed-scale assessments. For instance, land use/land 
cover (LULC) changes mapped via multi-temporal satel-
lite imagery provide spatial insights into the degradation 
or regeneration of vegetative cover, runoff dynamics, and 
erosion patterns (Jain et al., 2001). These transformations 
directly impact soil infiltration rates, sediment yield, and 
aquifer recharge potential, making them crucial indicators 
in sustainable watershed planning. Moreover, water quality 
and quantity assessments—often facilitated by in situ mea-
surements combined with remote sensing-derived indices 
like NDVI and SAVI—offer evidence-based understand-
ing of the consequences of interventions like check dams, 
contour bunding, or rainwater harvesting on hydrological 
processes (Sreedevi et al., 2009). Beyond hydrological met-
rics, biodiversity and ecosystem services within the water-
shed also undergo changes, with forest cover loss, habitat 
fragmentation, and altered microclimates often emerging 
as secondary effects of poorly planned watershed activi-
ties.Impact assessments are also indispensable in gauging 
the effectiveness of government-driven programmes such 
as the Integrated Watershed Management Programme 
(IWMP), by measuring pre- and post-intervention condi-
tions through biophysical and socio-economic indicators 
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(Sharma et al., 2011). These assessments foster adaptive 
management by revealing both intended benefits and 
unintended externalities of watershed interventions. In 
essence, impact assessment within watershed management 
acts as an integrative tool, weaving together hydrological 
modeling, ecological monitoring, and spatial analysis to 
guide evidence-based, resource-efficient, and environ-
mentally just decision-making.

Impact assessment Following a Disaster 
Event: A Multidimensional Framework
Impact assessment in the aftermath of a disaster consti-
tutes a critical epistemological and operational step toward 
understanding the scope, magnitude, and spatial hetero-
geneity of the event’s consequences. Whether induced by 
natural hazards—such as earthquakes, cyclones, or tsu-
namis—or anthropogenic triggers like industrial explo-
sions or armed conflict, a post-disaster impact assessment 
must transcend mere damage cataloging to encompass 
socio-economic, infrastructural, environmental, and psy-
chological dimensions (Birkmann, 2006).The initial phase 
typically involves a Rapid Damage and Needs Assessment 
(RDNA), which prioritizes life-saving measures and iden-
tifies critical disruptions to essential services—healthcare, 
water supply, transportation, and communications. This 
is followed by a Comprehensive Impact Assessment (CIA) 
that integrates satellite-derived geospatial data, ground 
truthing, and community-level participatory appraisals to 
delineate loss patterns and resilience gaps. For instance, 
high-resolution satellite imagery and synthetic aperture 
radar (SAR) data have become indispensable for mapping 
structural collapse, inundated zones, and displaced popula-
tions in real time (Voigt et al., 2016). The economic dimen-
sion assesses direct losses—damages to physical assets and 
infrastructure—and indirect losses, such as income disrup-
tion and production delays. Metrics like Gross Domestic 
Product (GDP) deviation, insurance claims, and sectoral 
output contraction are commonly utilized, particularly in 
contexts of urban disasters (Hallegatte & Przyluski, 2010). 
The social impact encompasses mortality and morbidity, 
displacement, trauma, and long-term disruptions in edu-
cation and livelihoods. Vulnerable populations—children, 
the elderly, women, and persons with disabilities—are dis-
proportionately affected, often necessitating gender- and 
age-sensitive response frameworks (Wisner et al., 2004). 
From an environmental perspective, disasters can pre-
cipitate cascading consequences, including land degrada-
tion, deforestation, contamination of water bodies, and 
loss of biodiversity. For example, the 2004 Indian Ocean  
tsunami led to widespread salinization of arable land and 
destruction of coastal ecosystems, consequences that 

extended far beyond the initial disaster footprint (UNEP, 
2005). A robust post-disaster impact assessment also evalu-
ates institutional and governance failures, highlighting gaps 
in early warning systems, land-use planning, and emergency 
preparedness. This introspective analysis forms the founda-
tion for resilient reconstruction and policy reform.

Ultimately, the goal of a post-disaster impact assess-
ment is not merely to document loss, but to inform Build 
Back Better (BBB) strategies, guide equitable resource allo-
cation, and embed long-term resilience into socio-envi-
ronmental systems.

Comparative Review of Classification 
Techniques in Remote Sensing Based 
on Accuracy Parameters
Accuracy assessment serves as the cornerstone for evaluat-
ing the performance of classification algorithms in remote 
sensing, providing empirical validation for thematic map 
reliability. Various algorithms, from traditional machine 
learning to deep learning paradigms, exhibit differen-
tial performance under varying spatial resolutions, data 
complexities, and ecological contexts. This section pro-
vides a comparative synthesis grounded in accuracy met-
rics, including Overall Accuracy (OA), Kappa Coefficient 
(κ), and class-wise User’s and Producer’s Accuracy, with 
emphasis on case study evidence.

Support Vector Machines (SVM)
SVM has demonstrated exceptional performance in high-di-
mensional feature spaces, particularly with limited training 
data. In a seminal study, Pal and Mather (2005) reported 
an OA of 92.2% in land cover classification using Landsat 
ETM+ over agricultural regions in England, significantly 
outperforming Maximum Likelihood Classifier (MLC), 
which achieved only 83.4% accuracy (Pal & Mather, 2005). 
Its kernel-based flexibility allows effective boundary delin-
eation even in spectrally overlapping classes.

K-Nearest Neighbors (K-NN)
Despite its algorithmic simplicity, K-NN often underper-
forms in high-dimensional datasets due to the “curse of 
dimensionality.” Xie (2022) reported OA values declin-
ing to 78% for K-NN classifiers applied to MODIS data  
in urban-rural fringe zones, where intra-class spectral  
heterogeneity was pronounced (Xie, 2022). However, 
K-NN remains viable for well-separated classes in low-res-
olution datasets.
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Convolutional Neural Networks (CNN)
CNNs excel in spatial feature extraction, especially when 
integrated with high-resolution data. In urban land use 
classification using UAV imagery, a CNN-based model 
attained an OA of 95.3% and κ of 0.93, outperforming both 
RF and SVM in the same test region (Zhu et al., 2017). 
Their end-to-end learning capability captures contextual 
semantics, crucial for complex landscapes.

Long Short-Term Memory (LSTM) 
Networks
LSTM, designed for temporal sequence modeling, performs 
exceptionally in multi-temporal classification tasks. For 
instance, a study by Bai et al. (2019) using Sentinel-2 time-se-
ries imagery achieved OA of 94.1%, accurately distinguishing 
crop phenological stages, where traditional classifiers failed to 
retain temporal dependencies (Bai et al., 2019).

Supervised Classification
MLC is generally regarded as one of the most accu-
rate conventional classifiers when class distributions are 
Gaussian. For example, Foody et al. (1996) reported OA 
of 89.3% with κ = 0.85 in a multispectral agricultural clas-
sification using MLC, outperforming minimum distance 
and parallelepiped in most land cover categories (Foody 
et al., 1996). Minimum distance often underperforms in 
heterogeneous or overlapping classes due to its inability 
to accommodate covariance. In a study by Kavzoglu and 
Mather (2003), this method produced OA of ~78.6%, sig-
nificantly lower than MLC on the same Landsat TM data-
set (Kavzoglu & Mather, 2003). Parallelepiped is prone 
to omission errors (pixels falling outside all boxes) and 
commission errors (pixels falling into multiple boxes). Its 
simplicity makes it useful for rapid classification but often 
at the cost of reduced accuracy. Mas (1999) reported OA 
ranging between 65–75%, with high variability based on 
class separability (Mas, 1999).

Unsupervised Classification
Unsupervised methods, such as k-means and ISODATA, 
cluster data without prior labeling. These are particularly 
useful in data-scarce or exploratory scenarios. In a study 
over forested terrain, ISODATA yielded OA of ~75%, but 
its κ-value (~0.68) highlighted issues of spectral confusion 
in mixed pixels (Xie, 2022). While computationally light-
weight, unsupervised methods typically underperform in 

heterogeneous landscapes compared to supervised and 
deep learning techniques.

Autoencoders
Autoencoders learn unsupervised feature representations 
by compressing and reconstructing inputs. In hyper-
spectral classification, autoencoder-based methods have 
demonstrated up to OA of 90%, significantly improving 
accuracy in noise-prone datasets (Ma et al., 2016).

U-Net Architecture
U-Net, a specialized CNN variant, enables precise pix-
el-wise segmentation, crucial in biomedical and land cover
mapping. For high-resolution satellite imagery, U-Net
has achieved OA exceeding 96% in urban sprawl detec-
tion, offering both spatial precision and contextual depth
(Iglovikov & Shvets, 2018).

Comparative Review of Classification 
Techniques in Remote Sensing:  
A Focus on Computational Time
In remote sensing applications, computational efficiency 
is a critical determinant of the practicality of classification 
techniques, especially when processing high-dimensional 
imagery or conducting near-real-time analysis. Various 
approaches—ranging from traditional classifiers to state-
of-the-art deep learning models—exhibit significant vari-
ation in computational time, influenced by factors such as 
algorithmic complexity, training data volume, and hard-
ware infrastructure.

Supervised Methods
As a parametric classifier based on Bayesian probabil-
ity, MLC assumes normal distribution of input data and 
involves the computation of covariance matrices and class 
statistics. While its training time is relatively low due to 
analytical computation, prediction can become slower in 
high-dimensional data due to matrix inversion opera-
tions. However, MLC generally remains computationally 
efficient for moderate datasets (Richards & Jia, 2006). 
Minimum Distance calculates Euclidean distances from 
each pixel to class means. Its linear complexity and inde-
pendence from covariance structures ensure extremely 
fast computation, making it suitable for quick prelim-
inary classifications. However, its low discriminative 
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power compromises performance in spectrally overlap-
ping classes (Jensen, 2005). Parallelepiped Classifier by 
defining spectral boundaries as multidimensional boxes, 
the algorithm rapidly classifies pixels falling within the 
defined thresholds. Its rule-based structure offers excel-
lent speed but results in ambiguity for pixels falling out-
side or within overlapping regions, limiting precision in 
complex landscapes (Lillesand et al., 2015).

Unsupervised Learning Methods
K-Means Clustering algorithm iteratively assigns pixels
to clusters by minimizing intra-cluster variance. Though
efficient for small-to-moderate data sizes, the need for
repeated passes through the data makes it time-consuming
for high-resolution images. Computation scales with the
number of clusters and iterations (Jain, 2010).ISODATA
an extension of K-means, ISODATA introduces dynamic
merging and splitting of clusters, which adds additional
computational overhead. It is more robust but slower than
K-means due to iterative recalculations and re-evaluations
of the number of classes.

Traditional Machine Learning Methods
SVMs are computationally demanding during train-
ing, especially with non-linear kernels, as complexity 
increases quadratically with the number of samples. 
However, once trained, classification is relatively fast. 
The method is often accelerated using kernel approxi-
mation techniques (Pal & Mather, 2005). The ensemble 
nature of RF, involving multiple decision trees, allows for 
parallelization, which significantly reduces training time 
on modern multi-core processors. Despite moderate pre-
processing demands, prediction is swift due to efficient 
voting mechanisms. RF also scales well with high-dimen-
sional inputs (Rodriguez-Galiano et al., 2012). K-NN 
incurs negligible training cost but is computationally 
intensive during classification, as it requires distance cal-
culations to all training samples. The computation time 
scales linearly with dataset size, making it inefficient for 
large image datasets unless optimized through dimen-
sionality reduction or approximate nearest neighbor 
algorithms (Cover & Hart, 1967).

Deep Learning Models
CNNs provide exceptional classification accuracy, partic-
ularly for spatially complex data, but demand extensive 
computation due to multiple convolutional, pooling, and 

fully connected layers. Training requires GPU acceler-
ation and high memory bandwidth, although inference 
can be optimized with quantization and model pruning 
(Zhu et al., 2017). LSTM networks, designed to capture 
temporal dependencies, are especially suited to multi-tem-
poral remote sensing datasets. However, their sequential 
processing nature and extensive parameter space make 
training significantly slower than feedforward models. 
Computational demands increase non-linearly with the 
length of temporal input (Sherrah, 2016). Autoencoders 
are used for unsupervised feature extraction, often as a 
pre-classification step. U-Net architectures, common in 
semantic segmentation, possess an encoder-decoder struc-
ture that is computationally intensive during both training 
and prediction. Yet, they are efficient when deployed on 
hardware-accelerated systems due to the possibility of end-
to-end training (Ronneberger et al., 2015).

Comparative Review of Data 
Requirements in Remote Sensing 
Classification Techniques
Accurate classification of remote sensing data is criti-
cally dependent on the nature and extent of input data. 
Different algorithms exhibit varying dependencies on 
labeled samples, feature richness, and data dimension-
ality. Understanding these dependencies is essential 
for optimal algorithm selection in land cover mapping, 
urban expansion monitoring, and environmental impact 
assessments.

Supervised Classification Algorithms
MLC presumes a normal distribution of spectral data and 
requires a substantial number of accurately labeled train-
ing samples per class to estimate class-specific mean vec-
tors and covariance matrices. Misclassification is likely 
when sample size is small or classes overlap spectrally 
(Richards & Jia, 2006). Minimum Distance method needs 
representative class means, but not covariance data. It is 
less data-intensive than MLC but suffers in complex land-
scapes where class means do not effectively capture intra-
class variability (Campbell & Wynne, 2011). Parallelepiped 
Classifier requires minimum and maximum values per 
band for each class. It has low data demands, but performs 
poorly with overlapping class boundaries and is sensitive 
to outliers, often leaving pixels unclassified (Lillesand et 
al., 2015). These methods depend on labeled data, but the 
quantity and statistical consistency of training samples 
strongly influence their reliability.
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Unsupervised Classification Algorithms
Unsupervised methods such as K-Means and ISODATA 
operate without labeled data, instead identifying natural 
spectral groupings. They are ideal where ground truth is 
unavailable but often require post-classification interpre-
tation to assign real-world classes. K-Means: Requires the 
user to define the number of clusters; sensitive to initial 
centroids. ISODATA more robust, allowing cluster merg-
ing and splitting, but demands more iterations and compu-
tational time (Jain, 2010). Minimal data preparation; best 
suited for exploratory analysis or data-scarce regions.

Traditional Machine Learning 
Algorithms
RF is tolerant of small to medium-sized labeled datasets and 
handles high-dimensional data well. It can manage noisy 
or incomplete data and outputs feature importance, aiding 
variable selection (Rodriguez-Galiano et al., 2012). SVM 
performs exceptionally with limited labeled samples, par-
ticularly in high-dimensional settings. However, selecting 
optimal kernels requires domain expertise (Pal & Mather, 
2005). K-NN is highly sensitive to the quantity and spatial 
distribution of labeled data. It performs poorly with sparse 
training sets due to its dependence on local data density 
(Cover & Hart, 1967). Traditional ML classifiers need mod-
erate labeled datasets, but are generally robust to data imper-
fections and adaptable to mixed-class distributions.

Deep Learning Algorithms
CNNs require large, annotated datasets with diverse spa-
tial features. They benefit from data augmentation, but 
training from scratch demands computationally expen-
sive, high-volume labeled inputs (Zhu et al., 2017). In 
spatiotemporal applications (e.g., phenological mon-
itoring), LSTM models demand temporally dense, 
chronologically labeled datasets to capture sequence 
dependencies (Sherrah, 2016). Designed for pixel-level 
semantic segmentation, U-Net needs fine-resolution, 
manually labeled masks. Its accuracy scales directly with 
annotated spatial data quality and diversity (Ronneberger 
et al., 2015). Primarily unsupervised, autoencoders learn 
feature representation from unlabelled data but often 
require supervised fine-tuning for classification tasks. 
They can be useful in feature compression and anomaly 
detection (Bengio et al., 2013). Deep learning models are 
data-hungry, both in terms of volume and annotation 
quality. Transfer learning or weak supervision is often 
adopted to alleviate data preparation constraints.

Table 1: Data Requirement of different algorithms.

Category Labeled Data 
Required

Volume 
Requirement

Key 
Dependencies

MLC, MDM, 
Parallelepiped

High Low– 
Moderate

Statistical repre-
sentation, class 
separability

Unsupervised 
(K-Means etc.)

None Moderate Spectral con-
trast, post-label-
ing effort

RF, SVM, 
K-NN

Moderate Moderate Class balance, 
feature richness

CNN, LSTM,
U-Net, Auto-
enc.

Very High 
(except Auto-
enc pretrain-
ing)

Very High Pixel-level anno-
tation, sequence 
length, spatial 
detail

Challenges and Limitations in Remote 
Sensing Classification Methods
Supervised Classification
Maximum Likelihood Classifier requires normality in 
class distributions, which is rarely upheld in heterogeneous 
landscapes, leading to inaccurate modeling in complex 
terrains (Richards & Jia, 2006). Sensitive to small sample 
sizes, as reliable estimates of mean and covariance matri-
ces demand substantial, balanced class representation. The 
method exhibits poor generalizability when class spectral 
characteristics vary across regions due to seasonal, sensor, 
or atmospheric differences.

Minimum Distance simplifies classification by ignor-
ing covariance, often resulting in spectrally overlapping 
classes being misclassified. Performs moderately with 
fewer samples but fails to capture intra-class spectral vari-
ability. Limited robustness; changes in scene illumination 
or land cover types across regions compromise its accuracy 
(Campbell & Wynne, 2011).

Parallelepiped computationally fast but inefficient 
in handling class overlap, producing excessive “unclassi-
fied” areas or ambiguous labels. Relies heavily on manually 
defined thresholds, which can be subjective and non-adap-
tive. Highly context-specific; spectral boundaries are not 
transferable across different landscapes or acquisition times.

Unsupervised Classification
Unsupervised algorithms struggle with high-dimensional 
and noisy data, lacking contextual understanding of class 
semantics. Although label-independent initially, post-clas-
sification labeling is often ambiguous and requires expert 
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interpretation (Jain, 2010). Clusters are data-dependent; 
no semantic continuity across regions makes replication of 
classes in different areas unreliable.

Traditional Machine  
Learning Algorithms
Random Forest requires feature selection to avoid redun-
dancy; performance degrades with collinear variables 
(Rodriguez-Galiano et al., 2012). Though relatively toler-
ant, unbalanced or sparse training datasets can bias classi-
fication towards dominant classes. RF is non-parametric 
and context-sensitive; models trained in one region often 
need retraining in new geographic domains.

Support Vector Machine is computationally expen-
sive with large datasets and kernel selection is non-trivial 
(Pal & Mather, 2005). Works well with fewer samples but 
is sensitive to mislabeled or noisy data, affecting boundary 
placement. Poor adaptation across regions without kernel 
re-optimization or retraining using localized samples.

K-Nearest Neighbors (K-NN) computationally
demanding during classification phase due to real-time 
distance calculations. Requires dense and well-distributed 
training data; performance deteriorates with sparse sam-
ples. Strongly dependent on local feature distributions; not 
transferable without complete data regeneration in new 
areas (Cover & Hart, 1967).

Deep Learning Algorithms
Convolutional Neural Networks (CNN) requires complex 
preprocessing such as patch extraction and normalization; 
suffers from overfitting without regularization. Extremely 
data-hungry; model performance scales with the quantity 
and diversity of annotated samples (Zhu et al., 2017). CNNs 
trained on one region may fail elsewhere unless transfer learn-
ing or domain adaptation is used, due to spatial heterogeneity.

Long Short-Term Memory demands temporally 
ordered datasets, which may be incomplete or irregular 
in many satellite archives. Needs chronologically labeled 
sequences; sparsity disrupts temporal learning. Highly tem-
poral context-specific; requires recalibration when applied 
to different climatic or phenological zones (Sherrah, 2016).

U-Net requires pixel-level segmentation masks, which
are resource-intensive to annotate; memory requirements 
are also high. Needs large-scale, spatially diverse datasets 
for accurate segmentation. Generalizes poorly across land-
scapes with different textural and structural features unless 
retrained or fine-tuned (Ronneberger et al., 2015).

Autoencoders suffers from feature entanglement 
during encoding; deep architectures are prone to learn-
ing trivial features. Initially unsupervised, but supervised 
fine-tuning requires good-quality labels to yield accurate 
classification (Bengio et al., 2013). Pre-trained autoencod-
ers may extract generalized features, but final classification 
heads require retraining for new regions.
Table 2: Synthesis of Challenges.

Method
Processing 
Complexity

Training Data 
Dependence Transferability

MLC, MDM, 
Parallelepiped

Moderate to 
Low

Moderate to 
High

Low

Unsupervised Low None (but high 
post-labelling)

Very Low

RF, SVM, 
K-NN

Moderate to 
High

Moderate Region-spe-
cific retraining 
needed

CNN, LSTM, 
U-Net

Very High Very High Low without 
domain adap-
tation

Autoencoders High (unsuper-
vised + tuning)

Moderate (for 
classification)

Moderate

Future Trends in Geospatial Analysis: 
AI, Cloud, and Explainability
The geospatial analytics domain is undergoing a paradigm 
shift, driven by advancements in artificial intelligence (AI), 
cloud computing, and real-time systems. These innova-
tions not only enhance computational efficiency and scal-
ability but also offer transparency and actionable insights 
for critical environmental and urban decision-making.

Integration of AI with Cloud Platforms
The synergistic integration of AI with cloud-based geospa-
tial platforms—such as Google Earth Engine (GEE) cou-
pled with machine learning libraries like TensorFlow—is 
redefining the scalability and automation of remote sens-
ing tasks. This fusion enables real-time access to peta-
byte-scale Earth observation archives and facilitates rapid 
deployment of predictive models without local infra-
structure constraints (Gorelick et al., 2017). For instance, 
TensorFlow-integrated GEE pipelines can classify land use, 
detect deforestation, or monitor crop health dynamically, 
overcoming traditional data bottlenecks.

Moreover, cloud-based infrastructures like Amazon 
Web Services (AWS) and Microsoft Azure are support-
ing geospatial AI through flexible GPU-accelerated 
environments, allowing model training and inference at 
unprecedented spatial and temporal resolutions (Ching et  
al., 2018).
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Real-Time Geospatial Monitoring
The convergence of Internet of Things (IoT), satellite con-
stellations, and edge AI models is enabling near-real-time 
environmental monitoring. Platforms like Sentinel Hub 
and Planet Scope offer high-frequency imagery, which, 
when fused with real-time analytics, support disaster early 
warning systems, flood surveillance, and air quality predic-
tion with minimal latency (Li et al., 2021). Such real-time 
capabilities are crucial in climate resilience frameworks, 
where rapid anomaly detection can significantly reduce 
response time. However, achieving operational real-time 
analysis necessitates streamlined data ingestion, low-la-
tency processing architectures, and high-bandwidth 
communication protocols areas that remain under active 
development.

Explainable AI (XAI) in Geospatial 
Modeling
As geospatial AI models become increasingly complex, 
the demand for interpretability and trustworthiness has 
led to the emergence of Explainable AI (XAI). In critical 
applications—such as drought forecasting, urban heat 
mapping, and habitat loss detection—black-box models 
are often criticized for lacking transparency. Techniques 
like SHAP (Shapley Additive explanations), LIME (Local 
Interpretable Model-Agnostic Explanations), and saliency 
maps are being adapted to remote sensing models to elu-
cidate spatial decision factors (Samek et al., 2017). XAI 
ensures regulatory compliance and enhances stakeholder 
trust by revealing how and why models reach specific deci-
sions. Furthermore, interpretable models facilitate model 
transferability, enabling better adaptation across geogra-
phies with different spectral or temporal characteristics—a 
long-standing challenge in remote sensing classification.

The future of geospatial analysis lies in the triad of 
scalable cloud-AI integration, responsive real-time sys-
tems, and interpretable model architectures. As data vol-
umes and application complexities continue to grow, 
embracing these trends will be essential for developing 
sustainable, transparent, and operational geospatial intel-
ligence systems.

Conclusion
The comparative exploration of classification methodol-
ogies spanning traditional statistical paradigms, machine 
learning frameworks, and contemporary deep learn-
ing architectures- underscores the evolving landscape of 

remote sensing analytics. Each algorithmic family exhib-
its distinctive strengths and limitations, shaped largely by 
data dimensionality, training requirements, computational 
complexity, and interpretability.

Traditional supervised classifiers such as Maximum 
Likelihood, Parallelepiped, and Minimum Distance 
remain foundational, particularly in structured settings 
where spectral separability is well-defined and prior sta-
tistical assumptions are valid. However, their sensitivity 
to noise, limited adaptability to high-dimensional data, 
and suboptimal performance in heterogeneous landscapes 
often restrict their applicability in modern large-scale, 
multisensory analyses.

In contrast, machine learning algorithms like Support 
Vector Machines (SVM), Random Forest (RF), and 
K-Nearest Neighbors (K-NN) offer enhanced robustness
and generalizability. These algorithms excel in handling
nonlinear relationships, variable importance assessment,
and moderate-sized datasets. Nonetheless, their depen-
dence on quality training data and susceptibility to mis-
classification in spectrally similar classes impose notable
challenges—especially across diverse geographies.

Unsupervised approaches, including K-Means and 
ISODATA, afford autonomy from labeled datasets, making 
them valuable for exploratory classification. Yet, their 
inability to associate semantic meaning with classes and 
their frequent convergence to local minima render them 
less reliable for operational decision-making.

The advent of deep learning models, encompassing 
Convolutional Neural Networks (CNNs), Long Short-
Term Memory (LSTM) networks, Auto encoders, and 
U-Net architectures, has fundamentally transformed geo-
spatial classification capabilities. These models demon-
strate unprecedented performance in capturing spatial
hierarchies, temporal dependencies, and complex spec-
tral textures. Their success, however, is contingent upon
voluminous labeled data, substantial computational infra-
structure, and rigorous hyper parameter tuning. Moreover,
the inherent opaqueness of deep networks necessitates the
parallel development of explainable frameworks to ensure
model transparency and trustworthiness. Collectively, the
trajectory of algorithmic advancement in remote sensing
reflects a shift from data-constrained analytical models
to data-driven, learning-based intelligence. While deep
learning stands at the frontier, the optimal methodological
choice must be aligned with data availability, application
specificity, computational constraints, and interpretabil-
ity demands. Thus, future efforts should prioritize hybrid
strategies- integrating the interpretability of traditional
methods, the flexibility of machine learning, and the
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precision of deep learning within scalable and explainable 
geospatial platforms. Such convergence is imperative to 
develop resilient, transferable, and ethically responsible 
geospatial intelligence systems.
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