Molecular Detection of Toxoplasma gondii: Accuracy, Prevalence, and Standardization of Diagnostic Protocols

Authors

  • Nisreen Jawad Kadhim Department of Microbiology, College of Medicine, Warith Al-Anbiyaa University, Karbala, Iraq. (Scopus ID: 57545994200)
  • Mohammed Salih Mahdi Department of Microbiology, College of Medicine, Warith Al-Anbiyaa University, Karbala, Iraq. ORCID: 0000-0003-4825-6892.
  • Lames Husam Almnseekans Department of Environmental Health, College of Applied Medical Sciences, University of Karbala, Iraq. (Scopus ID: 57208494695)

DOI:

https://doi.org/10.48165/ijapm.2025.41.2.04

Keywords:

high sensitivity, weaknesses, optimum, zoonotic infection, Toxoplasma gondii

Abstract

Toxoplasmosis is a common zoonotic infection caused by the protozoan parasite Toxoplasma gondii. It represents a significant public health concern worldwide. Early and accurate diagnosis is essential, especially among immunocompromised patients and pregnant women.This meta-analysis systematically reviews peer-reviewed studies (2015–2025) to evaluate molecular diagnostic methods used for detecting T. gondii in humans and animals.Data were extracted and synthesized from recent studies focusing on molecular detection techniques, methodological differences, diagnostic accuracy, and prevalence rates. Special attention was given to polymerase chain reaction (PCR) and its variants due to their superior sensitivity and specificity compared to conventional serological assays.PCR-based assays targeting multicopy nucleotide sequences such as B1 and 18S rDNA demonstrated higher sensitivity and specificity.Pooled prevalence varied by host species and geographical region.Emerging methods including loop-mediated isothermal amplification (LAMP) and real-time PCR (qPCR) were identified as rapid and quantitative approaches with strong diagnostic potential.Molecular diagnostic methods offer significant advantages for detecting T. gondii, but variability in protocols affects reliability. The study emphasizes the need for standardized and harmonized diagnostic procedures to achieve optimal outcomes in toxoplasmosis detection, management, and control.

References

Allaith, S. A., Abdel-aziz, M. E., Thabit, Z. A., Altemimi, A. B., Abd El-Ghany, K., Giuffrè, A. M., Al-Manhel, A. J. A., Ebrahim, H. S., Mohamed, R. M., & Abedelmaksoud, T. G. (2022). Screening and Molecular Identification of Lactic Acid Bacteria Producing β-Glucan in Boza and Cider. Fermentation, 8(8), 350. https://doi.org/10.3390/fermentation8080350

Almanseekanaa, L. H. (2022). Molecular Study of Enteropathogenic Escherichia Coli Isolation from Clinical Samples. Aca. Intl. J. Med. Sci., 1(1), 6–14. https://doi.org/10.59675/M2022-02

Almanseekanaa, L. H., Alabbas, A. K. A., Kadhim, N. J., & Ogaili, R. H. (2021). Molecular Study of Pseudomonas aeruginosa Isolated from Different Clinical Cases. Biochemical and Cellular Archives, 21(2), 3079–3082. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144244268

Almanseekanaa, L. H., & Ogaili, R. H. (2023). Comparison Between Serological and Molecular Identification of Vibrio Cholera. Aca. Intl. J. P. Sci., 1(2), 41–56. https://doi.org/10.59675/P125

Alsafar, S. H. H., Abd, A. R., & Mahdi, I. G. (2023). Isolation and Identification of Campylobacter coli / Campylobacter lari from Humans, Local Milk, and Milk Products Using Classical and Molecular Techniques in Karbala Province. Aca. Intl. J. V. Med., 1(1), 35–51. https://doi.org/10.59675/V117

Al-Shuhaib, M. B. S., Hashim, H. O., & Al-Shuhaib, J. M. B. (2025). D-Glucosamine is a Potential Urease Inhibitor from Middle Eastern Medicinal Plants for Combatting Helicobacter pylori Infections; a Molecular Docking and Simulation Approach. Biochemical Genetics, 63, 239–260. https://doi.org/10.1007/s10528-024-10709-5

Burg, J. L., Grover, C. M., Pouletty, P., & Boothroyd, J. C. (1989). Direct and Sensitive Detection of a Pathogenic Protozoan, Toxoplasma gondii, by Polymerase Chain Reaction. Journal of Clinical Microbiology, 27(8), 1787–1792.

Cenci-Goga, B. T., et al. (2011). Detection of Toxoplasma gondii in Meat Samples by PCR. Foodborne Pathogens and Disease, 8(6), 715–719.

Dubey, J. P. (2016). Toxoplasmosis of Animals and Humans (2nd ed.). CRC Press.

Edo, G. I., Mafe, A. N., Ali, A., Akpoghelie, P. O., Yousif, E., Isoje, E. F., Igbuku, U. A., Zainulabdeen, K., Owheruo, J. O., Essaghah, A. E., & Umar, H. (2025). Evaluation of Different Antimicrobial Polymeric Coatings for Food Contact Surfaces. Discover Food, 5(1), 1–48.

Homan, W. L., Vercammen, M., De Braekeleer, J., & Verschueren, H. (2000). Identification of a 200- to 300-fold Repetitive 529 bp DNA Fragment in Toxoplasma gondii, and Its Use for Diagnostic and Quantitative PCR. International Journal for Parasitology, 30(1), 69–75.

Kadhim, N. J., Al-Karawi, N. J., Almanseekanaa, L. H., & Ogaili, R. H. (2021). Molecular Characterization and Antibiotic Pattern of Klebsiella pneumoniae. Veterinary Practitioner, 22(2), 1–6.

Kim, K., et al. (2023). Molecular Detection of Toxoplasma gondii in Blood Samples of Domestic Ruminants. Pathogens, 12(2), 174.

Lkanaa, L. H., Jasim, A. M., & Mohammed, R. H. (2018). Causal Association of Toxoplasma gondii Seropositivity with Adverse Pregnancy Outcome(s) in Iraqi Women: A Cat-Based Dilemma. Journal of Entomology and Zoology Studies, 6(2), 1812–1815.

Montoya, J. G., & Liesenfeld, O. (2004). Toxoplasmosis. The Lancet, 363(9425), 1965–1976.

Muhammed, H. A. (2024a). Evaluate the Concordance Between Two Diagnostic Methods, RT-PCR and ELISA Techniques for the Detection of CCHFV in Karbala City. Aca. Intl. J. V. Med., 2(1), 48–58. https://doi.org/10.59675/V217U

Zulkifli, S. A. (2022). The Rules of Molecular Technique in Disease Identification. Acad. Int. J. Med. Sci., 1(1), 23–27. https://doi.org/10.59675/M2022-04

Pomares, C., & Montoya, J. G. (2016). Laboratory Diagnosis of Toxoplasmosis and Interpretation of Results. Clinical Microbiology Newsletter, 38(12), 99–104.

Puspitasari, H., et al. (2024). Molecular Detection of Toxoplasmosis in Wild Rats Using Loop-Mediated Isothermal Amplification Assay. Veterinary World, 17(7), 1575–1580.

Reischl, U., Bretagne, S., Krüger, D., Ernault, P., & Costa, J. M. (2003). Comparison of Two DNA Targets for the Diagnosis of Toxoplasmosis by Real-Time PCR Using Fluorescence Resonance Energy Transfer Hybridization Probes. BMC Infectious Diseases, 3, 7.

Robert-Gangneux, F., & Dardé, M. L. (2012). Epidemiology and Diagnostic Strategies for Toxoplasmosis. Clinical Microbiology Reviews, 25(2), 264–296.

Srinivasan, K., Altemimi, A. B., Narayanaswamy, R., Vasantha Srinivasan, P., Najm, M. A., & Mahna, N. (2023). GC–MS, Alpha-Amylase and Alpha-Glucosidase Inhibition, and Molecular Docking Analysis of Selected Phytoconstituents of Small Wild Date Palm Fruit (Phoenix pusilla). Food Science & Nutrition, 11(9), 5304–5317.

Whiting, P. F., et al. (2011). QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Annals of Internal Medicine, 155(8), 529–536.

Published

2025-11-20

How to Cite

Molecular Detection of Toxoplasma gondii: Accuracy, Prevalence, and Standardization of Diagnostic Protocols . (2025). Indian Journal of Animal Production and Management, 41(2), 17-21. https://doi.org/10.48165/ijapm.2025.41.2.04