Trace Minerals in Growth, Production and Reproduction in Farm Animals
DOI:
https://doi.org/10.48165/ijar.2025.46.01.1Keywords:
Bioavailability, Minerals, Livestock, Nutrition, Production, ReproductionAbstract
Inorganic minerals play a critical role in various physiological processes like growth, production and reproduction of animals. Requirements of minerals vary with different physiological states such as age, parity, stage of pregnancy (early vs advanced pregnancy) and stage of lactation i.e. non-lactating or lactating, production status as well as extent of minerals absorption by the body. The classification of minerals is based on their requirements in the animal body. The minerals required in much smaller amounts are referred to as trace or micro minerals i.e. cobalt (Co), Iron (Fe), Copper (Cu), Iodine (I), zinc (Zn), manganese (Mn), selenium (Se), molybdenum (Mo), chromium (Cr), and fluorine (F). In diet, the concentration of microminerals is expressed as ppm (parts per million), mg/kg (milligram per kilogram), whereas in some cases as ppb (parts per billion) or μg/kg (microgram per kilogram) of diet. The optimum amount of macro, as well as microminerals, is of utmost importance for various physiological needs. Deficiency and excess both have detrimental effects on growth, production and reproduction; thus have a significant bearing on the profitability of animal husbandry. Keywords: Bioavailability, Minerals, Livestock, Nutrition, Production, Reproduction.References
Akinloye, O., Abbiyesuku, F.M., Oguntibeju, O.O., Arowojolu, A.O. and Truter, E.J. (2011). The impact of blood and semi nal plasma zinc and copper concentrations on spermogram and hormonal changes in infertile Nigerian men. Reprod. Biol., 11: 83–98.
Al-Gubory, K.H., Bolifraud, P., Germain, G., Nicole, A. and Ceballos-Picot, I. (2004). Antioxidant enzymatic defence systems in sheep corpus luteum throughout pregnancy. Reproduction, 128: 767–774.
Anchordoquy, J. M., Picco, S. J., Seoane, A., Anchordoquy, J. P., Ponzinibbio, M. V., Mattioli, G. A., Peral García, P. and Furnus, C. C. (2011). Analysis of apoptosis and DNA damage in bovine cumulus cells after exposure in vitro to different zinc concentrations. Cell Biol. Int., 35(6):593-597.
Anchordoquy, J.M., Anchordoquy, J.P. Nikolo, N., Pascua, A.M. and Furnus, C.C. (2017). High copper concentrations pro duce genotoxicity and cytotoxicity in bovine cumulus cells. Environ. Sci. Pollut. Res. Int., 24: 20041–20049.
Anchordoquy, J.P., Anchordoquy, J.M., Sirini, M.A., Mattioli, G., Picco, S.J. and Furnus, C.C. (2013). Effect of different man ganese concentrations during in vitro maturation of bovine oocytes on DNA integrity of cumulus cells and subsequent embryo development. Reprod. Domest. Anim., 48: 905–911.
Anchordoquy, J.P., Anchordoquy, J.M., Sirini, M.A., Testa, J.A., Peral-Garcia, P. and Furnus, C.C. (2016). The importance of
manganese in the cytoplasmic maturation of cattle oocytes: Blastocyst production improvement regardless of cumulus cells presence during in vitro maturation. Zygote, 24: 139– 148.
Andrieu, S. (2008). Is there a role for organic trace element sup plements in transition cow health? Vet., J., 176: 77-83. Arthington, J. D. (2005). Trace mineral nutrition and the
immune response in cattle, In: Proceeding of 64th Annual Minnesota Nutrition Conferences, Minneapolis. 106. Ashoo, Verma, H.C., Singh, R.K., Kumar, R., Ramakant and Diwakar, R.P. (2020). Incidence of Reproductive Disorders in Cattle and Buffalo under Field Conditions in Eastern Plain Zone of Uttar Pradesh. Ind. J. Vet. Sci. and Biotech., 16(1): 66-68.
Aydemir, B., Kiziler, A.R., Onaran, I., Alici, B., Ozkara, H. and Akyolcu, M.C. (2006). Impact of Cu and Fe concentrations on oxidative damage in male infertility. Biol. Trace Elem. Res., 112: 193–203.
Aydemir, B., Kiziler, A.R., Onaran, I., Alici, B., Ozkara, H. and Akyolcu, M.C. (2006). Impact of Cu and Fe concentrations on oxidative damage in male infertility. Biol. Trace Elem. Res., 112: 193–203.
Basini, G. and Tamanini, C. (2000). Selenium stimulates estra diol production in bovine granulosa cells: Possible involve ment of nitric oxide. Domest. Anim. Endocrinol., 18: 1–17.
Bindari, Y. R., Shrestha, S., Shrestha, N. and Gaire, T. N. (2013). Effects of nutrition on reproduction—A review. Adv. Appl. Res., 4(1): 421–29.
Bonetta Valentino, R. (2022). The structure-function relation ships and physiological roles of MnSOD mutants. Biosci. Rep., 42(6), BSR20220202.
Brugger, D., Buffler, M. and Windisch, W. (2014). Development of an experimental model to assess the bioavailability of zinc in practical piglet diets. Arch. Anim. Nutr., 68(2):73-92.
Brzezińska-Ślebodzińska, E., Miller, J. K., Quigley, J. D., 3rd, Moore, J. R., and Madsen, F. C. (1994). Antioxidant status of dairy cows supplemented prepartum with vitamin E and selenium. J. Dairy Sci., 77(10):3087-3095.
Butani, M.G, Kumar, R., Dhami, A.J., Kavani, F.S. and Killedar, A. (2008). Incidence of major infertility problems in cross bred cows and buffaloes under field conditions. Indian J. Field Vets., 4(2): 1-4.
Butani, M.G., Dhami, A.J. and Kumar, R. (2011). Comparative blood profile of progesterone, metabolites and minerals in anoestrus, suboestrus, repeat breeding and normal cyclic buffaloes. Indian J. Field Vets., 7(2): 20-24.
Butani, M.G., Dhami, A.J., Kumar, R., Hirani, N.D., Ramani, V.P. and Patel, K.P. (2009). Influence of hormonal and antibiot
ics therapy on fertility and trace minerals profile in repeat breeding buffaloes. Indian J. Field Vets., 4(3): 12-16. Ceko, M., Hummitzsch, K., Hatzirodos, N., Bonner,W., Aitken, J., Russell, D., Lane, M., Rodgers, R. and Harris, H. (2015). X-ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics, 7(1):71-82.
Ceylan A, Erin I, Aksit H and Seyrek K. (2008). Concentrations of some elements in dairy cows with reproductive disor ders. Bull. Vet. Inst. Pulawy, 52: 109–12.
Chen, H., Kang, Z., Qiao, N., Liu, G., Huang, K., Wang, X., Pang, C., Zeng, Q., Tang, Z. and Li, Y. (2020). Chronic Copper Exposure Induces Hypospermatogenesis in Mice by Increasing Apoptosis Without Affecting Testosterone Secretion. Biol. Trace Elem. Res., 195: 472–480.
Chen, L., Min, J. and Wang, F. (2022). Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target Ther., 7(1):378. doi:10.1038/s41392-022-01229-y
Choi, H., Oh, D., Kim, M., Cai, L., Lee, J., Kim, E., Lee, G. and Hyun, S. H. (2022). Copper deficiency affects the devel opmental competence of porcine oocytes matured in vitro. Front. Cell Dev. Biol., 10: 993030. https://doi. org/10.3389/fcell.2022.993030
Cook, J.G. and Green, M.J. (2007). Reduced incidence of retained fetal membranes in dairy herds supplemented with iodine, selenium and cobalt. Vet Rec., 161(18):625-626.
D’Aleo, L., Shelford, J. and Fisher, L. (1983). Selenium-sulphur interactions and their influence on fertility in dairy cattle. Can. J. Anim. Sci., 63: 999.
Duplessis, M., Girard, C., Santschi, D., Laforest, J.P., Durocher, J. and Pellerin, D. (2014). Effects of folic acid and vitamin B12 supplementation on culling rate, diseases, and repro duction in commercial dairy herds. J. Dairy Sci., 97: 2346– 2354.
Duplessis, M., Girard, C., Santschi, D., Lefebvre, D. and Pellerin, D. (2012). Folic acid and vitamin B12 supplement enhances energy metabolism of dairy cows in early lactation. J. Dairy Sci., 95: 118.
Fatehi, A.N., Zeinstra, E.C., Kooij, R.V., Colenbrander, B., and Bevers, M.M. (2002). Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate. Theriogenology, 57: 1347–1355.
Fisinin, V. I., Papazyan, T. T. and Surai, P. F. (2009). Producing selenium-enriched eggs and meat to improve the selenium status of the general population. Crit. Rev. Biotechnol., 29(1):18-28.
Gaetke, L. M. and Chow, C. K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189(1-2): 147- 163. doi:10.1016/s0300-483x(03)00159-8
Kramer, U., Talke, I.N. and Hanikenne, M. (2007). Transition metal transport. FEBS Lett., 581: 2263-2272.
Kumar, J., Srivastava, S., Kumar, R., Mohan, G. and Chaudhary, V. (2022b). Effect of Janova, Sepia andOvsynch Protocol on Blood Biochemical Profile and Fertility in Postpartum Anoestrus Cows. Indian J. Anim. Res., 56(9): 1077-1083.
Kumar, R., Butani, M.G., Dhami, A.J., Kavani, F.S., Patel, M.D. and Shah, R.G. (2009). Progesterone, metabolites and min erals in anestrus, subestrus, repeat breeding and cyclic cows. Indian J. Anim. Reprod., 30(2): 19-22.
Kumar, R., Butani, M.G., Dhami, A.J., Kavani, F.S., Shah, R.G. and KilledarAnkita (2011a). Management of anoestrus and sub-oestrus cows using hormonal and nonhormonal drugs. Indian J. Anim. Reprod., 32(1): 24-27.
Kumar, R., Butani, M.G., Kavani, F.S. and Dhami, A.J. (2022a). Augmenting Fertility in Anestrus and Subestrus Cows with Hormonal Interventions and Their Effect on Blood Biochemical Profile. Indian J. Anim. Reprod., 43(1): 15–21.
Kumar, R., Diwakar, R.P., Verma, H.C., Kumar, A., Kumar, P., Singh, K.D., Yadav, V. (2020). The saga of macrominerals and its role in reproduction in domestic animals: a review. Glob. Vet., 22(5): 267-272.
Kumar, S. (2003). Management of infertility due to mineral defi ciency in dairy animals, p. 128–37. Proceedings of ICAR Summer School on “Advance diagnostic techniques and therapeutic approaches to metabolic and deficiency dis eases in dairy animals”. Held at IVRI, Izatnagar, Uttar Pradesh (15thJuly to 4thAugust).
Kumar, S., Pandey, A.K., Razzaque, W.A.A. and Dwivedi, D.K. (2011b). Importance of micro minerals in reproductive per formance of livestock. Vet. World, 4(5): 230-233.
Li, C. Y., Lin, W. C., Moonmanee, T., Chan, J. P., and Wang, C. K. (2024). The Protective Role of Vitamin E against Oxidative Stress and Immunosuppression Induced by Non-Esterified Fatty Acids in Bovine Peripheral Blood Leukocytes. Animals, 14(7): 1079.
Liu, J.Y., Yang, X., Sun, X.D., Zhuang, C.C., Xu, F.B. and Li, Y.F. ( 2016).Suppressive Effects of Copper Sulfate Accumulation on the Spermatogenesis of Rats. Biol. Trace Elem. Res., 174: 356–361.
Liu, M., Sun, X., Chen, B., Dai, R., Xi, Z. and Xu, H. (2022). Insights into Manganese Superoxide Dismutase and Human Diseases. Int. J. Mol. Sci., 23(24): 15893.
Lizarraga, R.M., Anchordoquy, J.M., Galarza, E.M., Farnetano, N.A., Carranza-Martin, A., Furnus, C.C., Mattioli, G.A. and Anchordoquy, J.P. (2019). Sodium selenite improves in vitro maturation of Bos primigenius taurus oocytes. Biol. Trace Elem. Res., 197: 149–158.
Lutsenko, S., Barnes, N.L., Bartee, M.Y. and Dmitriev, O.Y. (2007). Function and regulation of human copper-trans porting ATPases. Physiol. Rev., 87: 1011–1046.
Lutsenko, S., Barnes, N.L., Bartee, M.Y. and Dmitriev, O.Y. (2007). Function and regulation of human copper-trans porting ATPases. Physiol. Rev., 87: 1011–1046.
Malik, M. I., Raboisson, D., Zhang, X. and Sun, X. (2023). Effects of dietary chromium supplementation on dry matter intake and milk production and composition in lactating dairy cows: A meta-analysis. Front. Vet. Sci., 10: 1076777.
Marques, R. S., Cooke, R. F., Rodrigues, M. C., Cappellozza, B. I., Mills, R. R., Larson, C. K., Moriel, P. and Bohnert, D. W. (2016). Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the off
spring. J. Anim. Sci., 94(3):1215-1226.
Michael, J., Baruselli, P.S. and Campanile, G. (2019). Influence of nutrition, body condition, and metabolic status on repro duction in female beef cattle: A review. Theriogenology, 125: 277–284.
Milatovic, D., Gupta, R.C. (2018). Manganese. In: Veterinary Toxicology: Basic and Clinical Principles, 3rd ed.; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 445–454.
Mills, J. L., Ali, M., Buck Louis, G. M., Kannan, K., Weck, J., Wan, Y., Maisog, J., Giannakou, A. and Sundaram, R. (2019). Pregnancy Loss and Iodine Status: The LIFE Prospective Cohort Study. Nutrients. 11(3): 534.
Mitchell, J.B., Costill, D.L., Houmard, J.A., Flynn, M.G., Fink, W.J. and Beltz, J.D. (1988). Effects of carbohydrate inges tion on gastric emptying and exercise performance. Med. Sci. Sports Exerc., 20(2):110-115. doi:10.1249/00005768- 198820020-00002
Nazari, A., Dirandeh, E., Ansari-Pirsaraei, Z. and Deldar, H. (2019). Antioxidant levels, copper and zinc concentra tions were associated with postpartum luteal activity, preg nancy loss and pregnancy status in Holstein dairy cows. Theriogenology, 133: 97–103.
NRC (2001). Nutrient requirements of Dairy cattle: 7th edn. National Academic Press. pp: 105-1146.
Ogorek, M., Gąsior, T., Pierzchała, O., Daszkiewicz, R. and Lenartowicz, M. (2017). Role of copper in the process of spermatogenesis. Postepy Hig. Med. Dosw, 71:663-683.
Osman, D., Cooke, A., Young, T.R., Deery, E., Robinson, N.J. and Warren, M.J. (2021). The requirement for cobalt in vitamin B12: A paradigm for protein metalation. Biochim. Biophys. Acta. Mol. Cell Res., 1868(1): 118896.
Patel, P. M., Dhami, A. J., Savaliya, F. P., & Ramani, V. P. (2006). Postpartum plasma profile of certain trace elements in
Holstein Friesian cows with and without hormone ther apy under tropical climate. Indian J. Animal Reprod., 27(2), 19-24.
Paterson, J.A. and Engle, T.E. (2005). Trace mineral nutrition in beef cattle. Nutrition Conf. Proc. Dep. of Anim. Sci. UT Ext. and Univ. Prof. Dev., Univ. of Tennessee, Knoxville.
Patterson, H.H., Adams, D.C., Klopfenstein, T.J., Clark, R.T. and Teichert, B. (2003). Supplementation to meet metaboliz able protein requirements of primiparous beef heifers: II. Pregnancy and Economics. J. Anim. Sci., 81: 503-570.
Pereira, S. C., Oliveira, P. F., Oliveira, S. R., Pereira, M. L. and Alves, M. G. (2021). Impact of Environmental and Lifestyle Use of Chromium on Male Fertility: Focus on Antioxidant Activity and Oxidative Stress. Antioxidants (Basel). 10(9):1365.
Qiao, W., Peng, Z., Wang, Z., Wei, J. and Zhou, A. (2009). Chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells. Biol. Trace Elem. Res., 131(2):133-142.
Qu, L., Xu, J., Dai, Z., Elyamine, A.M., Huang, W., Han, D., Dang, B., Xu, Z. and Jia, W. (2023). Selenium in soil-plant system: Transport, detoxification and bioremediation. J. Hazard Mater., 452: 131272.
Radostits, O.M., Gay, C.C., Blood, D.C. and Hinchliff, F.W. (2007). Veterinary Medicine. A textbook for the diseases of cattle, sheep, pigs, goats and horses, 10th Ed. Bailliere Tindall, London.
Ranches, J., Vendramini, J.M. and Arthington, J.D. (2017). Effects of selenium biofortification of hayfields on measures of selenium status in cows and calves consuming these for ages. J. Anim. Sci., 95(1):120-128.
Schrauzer, G.N. (2001). Nutritional selenium supplements: Product types, quality, and safety. J. Am. Coll. Nutr., 20: 1–4. Schrauzer, G.N. and Surai, P.F. (2009). Selenium in human and animal nutrition: resolved and unresolved issues. A partly historical treatise in commemoration of the fiftieth anniversary of the discovery of the biological essentiality of selenium, dedicated to the memory of Klaus Schwarz (1914–1978) on the occasion of the thirtieth anniversary of his death. Crit. Rev. Biotechnol., 29(1): 2-9.
Schwarz, F., Kirchgessner, M., and Stangl, G. (2000). Cobalt requirement of beef cattle—feed intake and growth at dif ferent levels of cobalt supply. J. Anim. Physiol. Anim. Nutr., 83: 121–131.
Sharma, M.C., Joshi, C., Pathak, N.N. and Kaur, H. (2005). Copper status and enzyme, hormone, vitamin and immune function in heifers. Res. Vet. Sci., 79(2):113-123.
Sharma, R., Singh, M., Kumar, P. and Sharma, A. (2020). Mineral profile of abandoned cows suffering from anestrus. Indian J. Anim. Sci., 90(4): 581-583.
Sharma, S., Kaur, R. and Sandhu, H.S. (2004). Effect of subacute oral toxicity of molybdenum on antioxidant status in cross bred cow calves. Indian J. Anim. Sci., 74(7): 734-736.
Spears, J. W. (2000). Micronutrients and immune func tion in cattle. Proc. Nutr. Soc., 9(4):587-594. https://doi. org/10.1017/s0029665100000835
Spears, J.W. (2003). Trace mineral bioavailability in ruminants. J. Nutr., 133(5 Suppl 1), 1506S–9S.
Spears, J.W. and Weiss, W.P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet. J., 176: 70–76.
Spencer, T.E., Forde, N. and Lonergan, P. (2016). The role of progesterone and conceptus-derived factors in uterine biol ogy during early pregnancy in ruminants. J. Dairy Sci., 99: 5941–5950.
Stangl, G., Schwarz, F., Müller, H., and Kirchgessner, M. (2000). Evaluation of the cobalt requirement of beef cattle based on vitamin B12, folate, homocysteine and methylmalonic acid. Br. J. Nutr., 84: 645–653.
Studer, J. M., Schweer, W. P., Gabler, N. K. and Ross, J. W. (2022). Functions of manganese in reproduction. Anim. Reprod. Sci., 238: 106924.
Suhajda, A., Hegoczki, J., Janzso, B., Pais, I. and Vereczkey, G. (2000). Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J. Trace Elem. Med. Biol., 14(1): 43-47.
Suttle, N.F. (2010). Mineral Nutrition of Livestock, 4th ed.; CABI: Oxfordshire, UK, 2010.
Tarrant, E., P Riboldi, G., McIlvin, M.R., Stevenson, J., Barwinska-Sendra, A., Stewart, L.J., Saito, M.A. and Waldron, K.J. (2019). Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabo
lism. Metallomics, 11(1): 183–200.
Tatemoto, H., Sakurai, N. and Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxi dative stress during in vitro maturation: Role of cumulus cells. Biol. Reprod., 63: 805–810.
Trumbo, P., Yates, A.A., Schlicker, S. and Poos, M. (2001). Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc., 101: 294–301.
Tumer, Z. and Moller, L.B. (2010). Menkes disease. Eur. J. Hum. Genet., 18(5):511-518.
Tuormaa, T.E. (2000). Chromium Selenium Copper and other trace minerals in health and reproduction. J. Orthomol. Med., 15: 145-157.
Tvrda, E., Peer, R., Sikka, S.C. and Agarwal, A. (2015). Iron and copper in male reproduction: A double-edged sword. J. Assist. Reprod. Genet., 32: 3–16.
Van Emon, M., Sanford, C., & McCoski, S. (2020). Impacts of Bovine Trace Mineral Supplementation on Maternal and Offspring Production and Health. Animals: an open access journal from MDPI, 10(12), 2404. https://doi.org/10.3390/
ani10122404
Van Emon, M., Sanford, C., and McCoski, S. (2020). Impacts of Bovine Trace Mineral Supplementation on Maternal and Offspring Production and Health. Animals (Basel). 10(12): 2404. https://doi.org/10.3390/ani10122404
Vashchenko, G. and MacGillivray, R.T.A. (2013). Multi-copper oxidases and human iron metabolism. Nutrients, 5: 2289– 2313.
Veldhuis, N. A., Gaeth, A. P., Pearson, R. B., Gabriel, K., and Camakaris, J. (2009). The multi-layered regulation of copper translocating P-type ATPases. Biometals, 22: 177- 190.
Vierboom, M.M., Engle, T.E. and Kimberling, C.V. (2003). Effects of gestational status on apparent absorption and retention of copper and zinc in mature Angus cows and Su_olk ewes. Asian Aust. J. Anim. Sci., 16: 515–518.
Wada, O. (2004) “What are trace elements? Their deficiency and excess states”. Japan Medical Association Journal, 47(8): 351- 358.
Wang, C., Han, L., Zhang, G.W., Du, H.S., Wu, Z.Z., Liu, Q., Guo, G., Huo, W.J., Zhang, J., Zhang, Y.L., Pei, C.X. and Zhang, S.L. (2021). Effects of copper sulphate and coated copper sulphate addition on lactation performance, nutrient digestibility, ruminal fermentation and blood metabolites in dairy cows. Br. J. Nutr., 125(3): 251-259.
Wang, F., Zhang, J., Xu, L., Ma, A., Zhuang, G., Huo, S., Zou, B., Qian, J., and Cui, Y. (2024). Selenium volatilization in plants, microalgae, and microorganisms. Heliyon, 10(4): e26023. https://doi.org/10.1016/j.heliyon.2024.e26023
WHO. (2006). Guidelines on Food Fortification with Micronutrients; World Health Organization: Geneva, Switzerland.
Wood, R.J. (2009). Manganese and birth outcome. Nutr Rev., 67(7):416-420.
Yasui, T., McArt, J. A. A., Ryan, C. M., Gilbert, R. O., Nydam, D. V., Valdez, F., ... and Overton, T. R. (2014). Effects of chromium propionate supplementation during the peripar turient period and early lactation on metabolism, perfor mance, and cytological endometritis in dairy cows. J. Dairy Sci., 97(10): 6400-6410).
Zhang, X., Zhang, D., Xiang L. and Wang, Q. (2022). MnSOD functions as a thermoreceptor activated by low tempera ture. J. Inorg. Biochem., 229:111745.
Galbraith, M. L., Vorachek, W. R., Estill, C. T., Whanger, P. D., Bobe, G., Davis, T. Z. and Hall, J. A. (2016). Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements. Biol. Trace Elem. Res., 171(2): 338–
343.
Gao, G., Yi, J., Zhang, M., Xiong, J., Geng, L., Mu, C. and Yang, L. (2007). Effects of iron and copper in culture medium on bovine oocyte maturation, preimplantation embryo devel opment, and apoptosis of blastocysts in vitro. J. Reprod. Dev., 53(4): 777-784.
Genther, O. and Hansen, S. A. (2014). Multielement trace min eral injection improves liver copper and selenium concen trations and manganese superoxide dismutase activity in beef steers. J. Anim. Sci., 92: 695–704.
Ghaffari, R., Di Bona, K.R., Riley, C.L. and Richburg, J.H. (2019). Copper transporter 1 (CTR1) expression by mouse testicu lar germ cells, but not Sertoli cells, is essential for functional spermatogenesis. PLoS ONE, 14(4): e0215522.
Girard, C. and Matte, J. (1999). Changes in serum concentrations of folates, pyridoxal, pyridoxal-5-phosphate and vitamin b12 during lactation of dairy cows fed dietary supplements of folic acid. Can. J. Anim. Sci., 79: 107–114.
Goff, J. P. (2005). Major advances in our understanding of nutri tional influences on bovine health. J. Dairy Sci., 89: 1272- 1301.
Gombart, A. F., Pierre, A. and Maggini, S. (2020). A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients, 12(1): 236.
Gonzalez, M., Reyes-Jara, A., Suazo, M., Jo, W.J. and Vulpe C. (2008). Expression of Copper-Related Genes in Response to Copper Load. Am. J. Clin. Nutr., 88: 830S–4S.
Gonzalez-Montana, J. R., Escalera-Valente, F., Alonso, A. J., Lomillos, J. M., Robles, R. and Alonso, M. E. (2020). Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant: An Update. Animals (Basal), 10(10): 1855.
Grazul-Bilska, A.T., Caton, J.S., Arndt, W., Burchill, K., Thorson, C., Borowczyk, E., Bilski, J.J., Redmer, D.A., Reynolds, L.P. and Vonnahme, K.A. (2009). Cellular proliferation and vascularization in ovine fetal ovaries: Effects of undernu
trition and selenium in maternal diet. Reproduction, 137: 699–707.
Grazul-Bilska, A.T., Caton, J.S., Arndt, W., Burchill, K., Thorson, C., Borowczyk, E., Bilski, J.J., Redmer, D.A., Reynolds, L.P. and Vonnahme, K.A. (2009). Cellular proliferation and vascularization in ovine fetal ovaries: Effects of undernu
trition and selenium in maternal diet. Reproduction, 137: 699–707.
Gurol, K. C., Aschner, M., Smith, D. R. and Mukhopadhyay, S. (2022). Role of excretion in manganese homeostasis and neurotoxicity: a historical perspective. Am. J. Physiol. Gastrointest. Liver Physiol., 322(1): G79-G92. doi:10.1152/
ajpgi.00299.2021
Hall, J.A., Van Saun, R.J., Bobe, G., Stewart, W.C., Vorachek, W.R., Mosher, W.D., Nichols, T., Forsberg, N.E. and Pirelli, G.J. (2012). Organic and inorganic selenium: I. Oral bio availability in ewes. J. Anim. Sci., 90(2): 568–576.
Haryanto, B., Suksmasari, T., Wintergerst, E. and Maggini S. (2015). Multivitamin supplementation supports immune function and ameliorates conditions triggered by reduced air quality. Vitam. Miner., 4:1–15.
Herman, S., Lipinski, P., Ogorek, M., Starzynski, R., Grzmil, P., Bednarz, A. and Lenartowicz, M. (2020). Molecular Regulation of Copper Homeostasis in the Male Gonad during the Process of Spermatogenesis. Int. J. Mol. Sci., 21: 9053.
Hess, B.W., Moss, G.E. and Rule, D.C. (2008). A decade of devel opments in the area of fat supplementation research with beef cattle and sheep. J. Anim. Sci., 86: 188-204.
Hille, R., Nishino, T. and Bittner, F. (2011). Molybdenum enzymes in higher organisms. Coord Chem Rev., 255(9-10): 1179-1205.
Husain, S., Kumar, R., Singh, B., Srivastava, S., Kumar, R., Kumar, P., & Haque, N. (2021). Impact of Different Therapeutic Protocols on Blood Biochemical Markers and Fertility in Anestrus Sahiwal Cows. Ind. J. Vet. Sci. and Biotech., 17(4), 49-53.
Jhamb, D., Kumar, S., Verma, S., Shektawat, J., & Saxena, M. (2011). Conception rate in relation to micronutrients status in embryo recipient cows. Indian J. Anim. Reprod., 32(1), 1-3.
Kardos J, Heja L, Simon A, Jablonkai I, Kovacs R, Jemnitz K. (2018). Copper Signalling: Causes and Consequences. Cell Commun. Signal, 16:1–22.
Kaurav, P. S., Shukla, S. P., Bajaj, N. K., Singh, A. K., Khare, A., Manjhi, V., & Thakur, R. K. (2022). Serum Trace Minerals Profile in Anestrus Buffaloes Treated With Different Estrus Synchronization Protocols. Indian J Anim. Reprod., 43(2). 25-30.
Kodama, H., Fujisawa, C. and Bhadhprasit, W. (2012). Inherited copper transport disorders: Biochemical mechanisms, diagnosis, and treatment. Curr. Drug Metab., 13: 237–250.
Kowal, M., Lenartowicz, M., Pecio, A., Golas, A., Blaszkiewicz, T. and Styrna, J. (2010). Copper metabolism disorders affect testes structure and gamete quality in male mice. Syst. Biol. Reprod. Med., 56: 431–444.