Current Biotechnological Advances and Challenges in Culture and Transplantation of Spermatogonial Stem Cells in Animals
DOI:
https://doi.org/10.48165/ijar.2025.46.02.2Keywords:
spermatogonial stem cell, isolation, enrichment, culture, transplantationAbstract
The spermatogonial stem cells (SSCs) are unique stem cells of the adult body having the power of self-renewal and differ entiation into spermatozoa. Due to their distinct advantages over other stem cell types, the field of cell based regenerative medicine is exploring the potential of SSCs for its various applications in biotechnology and animal reproduction. Here we discuss about several approaches for SSC isolation, enrichment and characterization. Given the low percentage of SSCs in the testis, it is difficult to obtain an enriched population of SSC for further research. Differentiation and apoptosis over time is another challenge in establishing a long term SSC culture system. Hence, optimization of the culture media and culture conditions along with cryopreservation is a prerequisite for the downstream application of SSC technology in livestock. Although several markers have been identified for SSCs in animals, an appropriate species specific marker is still lacking. Suitable recipients for SSC transplantation are generated through surrogate sire technology in livestock. SSC transplantation has been experimentally successful in numerous livestock species with donor derived spermatogenesis and production of offspring. Such advancement coupled with genome editing may open new avenues for augmenting livestock production in near future. We emphasize that a deeper understanding of the SSCs characteristics and the fac tors that influence their differentiation and stemness is essential for the wider application of SSC technology in animals.
References
Abrishami, M., Anzar, M., Yang, Y., & Honaramooz, A. (2010). Cryopreservation of immature porcine testis tissue to maintain its developmental potential after xenografting into recipient mice. Theriogenology, 73(1), 86-96.
Binsila, B.K., Selvaraju, S., Ranjith K.R., Archana, S.S., Balaganur, Krishnappa, Ghosh, S.K., Kumar, H., Raghavendra, B.S., Arangasamy, A., & Bhatta, R. (2021). Current scenario and challenges ahead in application of spermatogonial stem cell technology in livestock. J. Assist. Reprod. Genet., 38, 3155-3173.
Binsila, B.K., Selvaraju, S., Ghosh, S.K., Ramya, L., Arangasamy, A., Ranjithkumaran, R., & Bhatta, R. (2020). EGF, GDNF, and IGF-1 influence the proliferation and stemness of ovine spermatogonial stem cells in vitro. J. Assist. Reprod. Genet., 37, 2615-2630.
Binsila, B.K., Selvaraju, S., Ghosh, S.K., Prasad, J.K., Ramya, L., Ravindra, J.P., & Bhatta, R. (2019). Purification of spermatogonial stem cells from ram testicular isolate using ficoll density gradient separation. Indian J. Anim. Reprod., 40(1), 7-11.
Binsila, B.K., Selvaraju, S., Ghosh, S.K., Parthipan, S., Archana, S.S., Arangasamy, A., Prasad, J.K., Bhatta, R., & Ravindra, J.P. (2018). Isolation and enrichment of putative spermatogonial stem cells from ram (Ovis aries) testis. Anim. Reprod. Sci., 196, 9-18.
Brinster, R.L., & Zimmermann, J.W. (1994). Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. U.S.A., 91(24), 11298-11302.
Cai, H., Wu, J.Y., An, X.L., Zhao, X.X., Wang, Z.Z., Tang, B., & Zhang, X.M. (2016). Enrichment and culture of spermatogonia from cryopreserved adult bovine testis tissue. Anim. Reprod. Sci., 166, 109-115.
Chapman, K.M., Medrano, G.A., Jaichander, P., Chaudhary, J., Waits, A.E., Nobrega, M.A., & Hamra, F.K. (2015). Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells. Cell Reports, 10(11), 1828-1835.
Chen, Z., Hong, F., Wang, Z., Hao, D., & Yang, H. (2020). Spermatogonial stem cells are a promising and pluripotent cell source for regenerative medicine. Am. J. Transl. Res., 12(11), 7048.
Goel, S., Reddy, N., Mandal, S., Fujihara, M., Kim, S.M., & Imai, H. (2010). Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia. Theriogenology, 74, 1221-1232.
Guan, K., Wolf, F., Becker, A., Engel, W., Nayernia, K., & Hasenfuss, G. (2006). Isolation and cultivation of stem cells from adult mouse testes. Nature Protocols, 1(3), 1344-1351.
Helsel, A.R., Oatley, M.J., & Oatley, J.M. (2017). Glycolysis optimized conditions enhance maintenance of regenerative integrity in mouse spermatogonial stem cells during long-term culture. Stem Cell Rep., 8(5), 1430-1441.
Hermann, B.P., & Oatley, J.M. (2023). Introduction: The Why’s and How’s for Studying Spermatogenesis and Spermatogonial Stem Cells. Methods Mol. Biol., 2656, 1-6.
Herrid, M., Olejnik, J., Jackson, M., Suchowerska, N., Stockwell, S., Davey, R., Hutton, K., Hope, S., & Hill, J.R. (2009). Irradiation enhances the efficiency of testicular germ cell transplantation in sheep. Biol. Reprod., 81, 898-905.
Hill, J., & Dobrinski, I. (2005). Male germ cell transplantation in livestock. Reprod. Fertil. Dev., 18, 13-18.
Honaramooz, A., Behboodi, E., Megee, S.O., Overton, S.A., Galantino, Homer, H., Echelard, Y., & Dobrinski, I. (2003). Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol. Reprod., 69, 1260-1264.
Izadyar, F., Matthijs, Rijsenbilt, J.J., Den Ouden, K., Creemers, L.B., Woelders, H., & de Rooij, D.G. (2002). Development of a cryopreservation protocol for type A spermatogonia. J. Androl., 23(4), 537-545.
Izadyar, F., Creemers, L.B., van Dissel-Emiliani, F.M., van Pelt, A.M., & de Rooij, D.G. (2000). Spermatogonial stem cell transplantation. Mol. Cell. Endocrinol., 169(1-2), 21-26.
Jung, S.E., Jin, J.H., Ahn, J.S., Kim, Y.H., Yun, M.H., Kim, S.H., & Ryu, B.Y. (2021). Effect of serum replacement on murine spermatogonial stem cell cryopreservation. Theriogenology, 159, 165-175.
Kanatsu-Shinohara, M., Inoue, K., Lee, J., Yoshimoto, M., Ogonuki, N., Miki, H., & Shinohara, T. (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell, 119(7), 1001-1012.
Laible, G., Wei, J., & Wagner, S. (2015). Improving livestock for agriculture–technological progress from random transgenesis to precision genome editing heralds a new era. Biotechnol. J., 10(1), 109-120.
Lee, Y.A., Kim, Y.H., Ha, S.J., Kim, B.J., Kim, K.J., Jung, M.S., & Ryu, B.Y. (2014). Effect of sugar molecules on the cryopreservation of mouse spermatogonial stem cells. Fertil Steril., 101, 1165-1175.
Lee, Y.A., Kim, Y.H., Kim, B.J., Jung, M.S., Auh, J.H., Seo, J.T., & Ryu, B.Y. (2013). Cryopreservation of mouse spermatogonial stem cells in dimethylsulfoxide and polyethylene glycol. Biol. Reprod., 89(5), 109-1.
Mirzapour, T., Movahedin, M., Tengku Ibrahim, T.A., Haron, A.W., & Nowroozi, M.R. (2013). Evaluation of the effects of cryopreservation on viability, proliferation and colony formation of human spermatogonial stem cells in vitro culture. Andrologia, 45(1), 26-34.
Niu, Z., Mu, H., Zhu, H., & Wu, J. (2017). p38 MAPK pathway is essential for self‐renewal of mouse male germline stem cells (mGSCs). Cell Proliferation, 50.
Park, K.E., Kaucher, A.V., Powell, A., Waqas, M.S., Sandmaier, S.E., Oatley, M.J., Park, C.H., Tibary, A., Donovan, D.M., & Blomberg, L.A. (2017). Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Scientific Rep., 7, 40176.
Sahare, M., Otomo, A., Komatsu, K., Minami, N., Yamada, M., & Imai, H. (2015). The role of signaling pathways on proliferation and self-renewal of cultured bovine primitive germ cells. Reprod. Med. Biol., 14, 17-25.
Sanou, I., van Maaren, J., Eliveld, J., Lei, Q., Meißner, A., de Melker, A.A., & Mulder, C.L. (2022). Spermatogonial stem cell-based therapies: taking preclinical research to the next level. Front. Endocrinol., 13, 850219.
Sato, T., Katagiri, K., Yokonishi, T., Kubota, Y., Inoue, K., Ogonuki, N., Matoba, S., Ogura, A., & Ogawa, T. (2011). In vitro production of fertile sperm from murine spermatogonial stem cell lines. Nature Comm., 2, 472.
Shinohara, M.K., Tanaka, T., Ogonuki, N., Ogura, A., Morimoto, H., Cheng, P.F., Eisenman, R.N., Trumpp, A., & Shinohara, T. (2016). Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal. Genes Dev., 30(23), 2637-2648.
Singh, S.P., Kharche, S.D., Pathak, M., Ranjan, R., Soni, Y.K., Saraswat, S., Singh, M.K., & Chauhan, M.S. (2021). Differential effects of extracellular matrix proteins on in vitro culture and growth characteristics of caprine male germ cells. In Vitro Cell. Dev. Biol. Animal, 57, 373-380.
Sun, Y.Z., Liu, S.T., Li, X.M., & Zou, K. (2019). Progress in in vitro culture and gene editing of porcine spermatogonial stem cells. Zool. Res., 40(5), 343–348.
Wang, Y., Ding, Y., & Li, J. (2017). CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. RNAi Small Regul. RNAs Stem Cells Methods Protoc., 293-305.
Webster, D., Bondareva, A., Solin, S., Goldsmith, T., Su, L., Lara, N.D.L.E.M., & Dobrinski, I. (2021). Targeted gene editing in porcine spermatogonia. Front. Genet., 11, 627673.
Xi, H.M., Ren, Y.J., Ren, F., Li, Y., Feng, T.Y., Wang, Z., Du, Y.Q., Zhang, L.K., & Hu, J.H. (2022). Recent advances in isolation, identification, and culture of mammalian spermatogonial stem cells. Asian J. Androl., 24(1), 5.
Yang, Y., & Honaramooz, A. (2011). Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating. Reprod. Fertil. Dev., 23(3), 496-505.
Zheng, Y., Zhang, Y., Qu, R., He, Y., Tian, X., & Zeng, W. (2014). Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction, 147, R65-R74.