Creation and assessment of lysozyme–alginate complexes for antimicrobial packaging of chicken patties
DOI:
https://doi.org/10.48165/jms.2025.20.01.4Keywords:
Alginate, lysozyme, chicken, meat pattiesAbstract
Edible films are made from biopolymers like alginate, pectin, starch, cellulose etc. Among these alginate is regarded as healthful and is taken without limitation. Lysozyme has a broad range of pH and temperature stability, making it a good preservation agent. This study aimed on development of alginate based edible films with lysozyme and to evaluate their efficacy on the quality of chicken meat patties. Alginate films with lysozyme of different concentrations were developed i.e., T1 (alginate with 1.62 ×106 specific units of lysozyme), T2(alginate with 3.24 ×106 specific units of lysozyme) and T3 (alginate with 8.1 ×106 specific units of lysozyme). One best film was selected based on parameters like thickness, grammature, water vapour permeability, anti-oxidant activity, tensile strength and antimicrobial activity along with control. The product was evaluated for parameters like pH, percent cooking loss, 2-TBARS, microbial analysis and sensory evaluation, Results showed that the thickness, grammature, water vapour permeability, anti-oxidant activity, tensile strength and antimicrobial activity of T3film were significantly (P≤0.05) higher and lower water sorption compared to T1, T2 and control films. The pH, 2-TBARS, Percent cooking loss and microbial count values were lower in the chicken patties that were wrapped in T3film.
Downloads
References
Azeredo, H. M. C., Mattoso, L. H. C., Wood, D., Williams, T. G., Avena-Bustillos, R. J., & McHugh, T. H. (2009). Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Journal of Food Science, 74(5), N31–N35. https://doi.org/10.1111/j.1750-3841.2009.01196.x
Bayarri, M., Oulahal, N., Degraeve, P., & Gharsallaoui, A. (2014). Properties of lysozyme/low methoxyl (LM) pectin complexes for antimicrobial edible food packaging. Journal of Food Engineering, 131, 18–25. https://doi.org/10.1016/j.jfoodeng.2014.01.013
Berry, B. W., & Stiffler, D. M. (1981). Effect of electric stimulation, boning temperature, formulation and rate of freezing on sensory, cooking, chemical and physical properties of ground beef patties. Journal of Food Science, 46(4), 1103–1106. https://doi.org/10.1111/j.1365-2621.1981.tb03028.x
Bilska, A. (2011). Packaging systems for animal origin food. Log Forum, 7(1), 1–4.
Bower, C. K., Avena-Bustillos, R. J., Olsen, C. W., McHugh, T. H., & Bechtel, P. J. (2006). Characterization of fish-skin gelatin gels and films containing the antimicrobial enzyme lysozyme. Journal of Food Science, 71(5), M141–M145. https://doi.org/10.1111/j.1750-3841.2006.00058.x
Brody, A. L. (1997). Packaging of food. In A. L. Brody & K. S. Marsh (Eds.), The Wiley Encyclopedia of Packaging (2nd ed., pp. 699–704). Wiley.
Carrillo, W., Gómez-Ruiz, J. A., Miralles, B., Ramos, M., Barrio, D., & Recio, I. (2016). Identification of antioxidant peptides of hen egg-white lysozyme and evaluation of inhibition of lipid peroxidation and cytotoxicity in the Zebrafish model. European Food Research and Technology, 242(10), 1777–1785. https://doi.org/10.1007/s00217-016-2662-2
Casariego, A., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., & Vicente, A. A. (2009). Chitosan/clay films properties as affected by biopolymer and clay micro/nanoparticles concentrations. Food Hydrocolloids, 23(7), 1895–1902. https://doi.org/10.1016/j.foodhyd.2009.01.002
Cha, D. S., Choi, J. H., Chinnan, M. S., & Park, H. J. (2002). Antimicrobial films based on Na-alginate and κ-carrageenan. Lebensmittel-Wissenschaft & Technologie, 35(7), 715–719. https://doi.org/10.1006/fstl.2002.0925
Conte, A., Buonocore, G. G., Bevilacqua, A., Sinigaglia, M., & Del Nobile, M. A. (2006). Immobilization of lysozyme on polyvinyl alcohol films for active packaging applications. Journal of Food Protection, 69(4), 866–870. https://doi.org/10.4315/0362-028X-69.4.866
Da Silva, M. A., Bierhalz, A. C. K., & Kieckbusch, T. G. (2009). Alginate and pectin composite films crosslinked with Ca²⁺ ions: Effect of the plasticizer concentration. Carbohydrate Polymers, 77(4), 736–742. https://doi.org/10.1016/j.carbpol.2009.02.014
De Souza, P. M., Fernandez, A., Lopez-Carballo, G., Gavara, R., & Hernandez-Muñoz, P. (2010). Modified sodium caseinate films as releasing carriers of lysozyme. Food Hydrocolloids, 24(4), 300–306. https://doi.org/10.1016/j.foodhyd.2009.11.002
Fogliano, V., Verde, V., Randazzo, G., & Ritieni, A. (1999). Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. Journal of Agricultural and Food Chemistry, 47(3), 1035–1040. https://doi.org/10.1021/jf980496s
Galus, S., & Lenart, A. (2013). Development and characterization of composite edible films based on sodium alginate and pectin. Journal of Food Engineering, 115(4), 459–465. https://doi.org/10.1016/j.jfoodeng.2012.03.006
Geraldine, R. M., Soares, N., Botrel, D., & Goncalves, L. (2008). Characterization and effect of edible coatings on minimally processed garlic quality. Carbohydrate Polymers, 72(3), 403–409. https://doi.org/10.1016/j.carbpol.2007.09.010
Gill, A. O., & Holley, R. A. (2000). Inhibition of bacterial growth on ham and bologna by lysozyme, nisin and EDTA. Food Research International, 33(1), 83–90. https://doi.org/10.1016/S0963-9969(00)00011-6
Huang, W., Xu, H., Xue, Y., Huang, R., Deng, H., & Pan, S. (2012). Layer-by-layer immobilization of lysozyme–chitosan–organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Research International, 48(2), 784–791. https://doi.org/10.1016/j.foodres.2012.06.022
Jridi, M., Abdelhedi, O., Salem, A., Kechaou, H., Nasri, M., & Menchari, Y. (2020). Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocolloids, 103, 105688. https://doi.org/10.1016/j.foodhyd.2020.105688
Kaewprachu, P., Osako, K., Benjakul, S., & Rawdkuen, S. (2015). Quality attributes of minced pork wrapped with catechin–lysozyme incorporated gelatin film. Food Packaging and Shelf Life, 3, 88–96. https://doi.org/10.1016/j.fpsl.2015.01.001
Lavorgna, M., Piscitelli, F., Mangiacapra, P., & Buonocore, G. G. (2010). Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydrate Polymers, 82(2), 291–298. https://doi.org/10.1016/j.carbpol.2010.04.069
Lian, Z. X., Ma, Z. S., Wei, J., & Liu, H. (2012). Preparation and characterization of immobilized lysozyme and evaluation of its application in edible coatings. Process Biochemistry, 47(2), 201–208. https://doi.org/10.1016/j.procbio.2011.10.035
Liu, L., Kerry, J. F., & Kerry, J. P. (2007). Application and assessment of extruded edible casings manufactured from pectin and gelatin/sodium alginate blends for use with breakfast pork sausage. Meat Science, 75(2), 196–202. https://doi.org/10.1016/j.meatsci.2006.06.021
Mallika, E. N., Rani, M. S., & Rao, B. E. (2018). Influence of calcium alginate coating on quality of pork patties. International Journal of Current Microbiology and Applied Sciences, 7(6), 824–827. https://doi.org/10.20546/ijcmas.2018.706.098
Min, S., Harris, L. J., Han, J. H., & Krochta, J. M. (2005). Listeria monocytogenes inhibition by whey protein films and coatings incorporating lysozyme. Journal of Food Protection, 68(11), 2317–2325. https://doi.org/10.4315/0362-028X-68.11.2317
Moraes, A. R., Gouvêa, L. R., Soares, N. F., Santos, M. D., & Gonçalves, M. C. (2007). Development and evaluation of antimicrobial film on butter conservation. Ciência e Tecnologia de Alimentos, 27(1), 33–36. https://doi.org/10.1590/S0101-20612007000100006
Naga Mallika, E., Masthan Reddy, P., Prabhakar Reddy, K., Rama Prasad, J., Sreenivasulu, D., & Prabhakar, K. (2008). Studies on the development of low fat functional pork storage and their shelf life using optimized hurdle technology [Unpublished doctoral thesis]. SVVU.
Nasrulwathoni, N., Shan, C. Y., Shan, W. Y., Rostinawati, T., Indradi, R. B., Pratiwi, R., & Muchtaridi, M. (2019). Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon, 5(8), e02299. https://doi.org/10.1016/j.heliyon.2019.e02299
Padgett, T., Han, I. Y., & Dawson, P. L. (1998). Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. Journal of Food Protection, 61(10), 1330–1335. https://doi.org/10.4315/0362-028X-61.10.1330
Park, S. I., Daeschel, M. A., & Zhao, Y. (2004). Functional properties of antimicrobial lysozyme–chitosan composite films. Journal of Food Science, 69(8), M215–M221. https://doi.org/10.1111/j.1365-2621.2004.tb09883.x
Pellissari, F. M., Grossmann, M. V. E., Yamashita, F., & Pineda, E. A. G. (2009). Antimicrobial, mechanical, and barrier properties of cassava starch–chitosan films incorporated with oregano essential oil. Journal of Agricultural and Food Chemistry, 57(16), 7499–7504. https://doi.org/10.1021/jf9002363
Prathyusha, K., Mallika, E. N., Rao, B. E., & Rao, T. S. (2016). Evaluation of edible polymer coatings enriched with grapeseed extract on chicken meat nuggets. Meat Science, 11(2), 40–44.
Proctor, V. A., & Cunningham, F. E. (1988). The chemistry of lysozyme and its use as a food preservative and a pharmaceutical. Critical Reviews in Food Science and Nutrition, 26(4), 359–395. https://doi.org/10.1080/10408398809527473
Rao, V. G., Mallika, E. N., & Rao, B. E. (2019). Effect of application of natural polyphenol containing polymer coatings on quality of pork balls. Journal of Meat Science, 14(2), 6–11.
Rodriguez-Misael, C., Villegas-Yepez, C., Gil Gonzalez, J. H., Rodríguez, P. E., & Ortega-Toro, R. (2020). Development and evaluation of edible films based on cassava starch, whey protein, and beeswax. Heliyon, 6(9), e04972. https://doi.org/10.1016/j.heliyon.2020.e04972
Soni, A., Kandeepan, G., Mendiratta, S. K., Shukla, V., & Kumar, A. (2015). Development and characterization of essential oils incorporated carrageenan based edible film for packaging of chicken patties. Nutrition & Food Science, 46(1), 82–95. https://doi.org/10.1108/NFS-04-2015-0040
Tarladgis, B. G., Watts, B. M., Younathan, M. T., & Dugan, L. R. (1960). A distillation method for the quantitative determination of malonaldehyde in rancid foods. Journal of the American Oil Chemists’ Society, 37(1), 44–48. https://doi.org/10.1007/BF02630824
Trout, E. S., Hunt, M. C., Johnson, D. E., Claus, J. R., Kastner, C. L., & Kropf, D. H. (1992). Chemical, physical and sensory characterization of ground beef containing 5 to 30% fat. Journal of Food Science, 57(1), 25–29. https://doi.org/10.1111/j.1365-2621.1992.tb05433.x
Tunc, S., & Duman, O. (2010). Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Applied Clay Science, 48(3), 414–424. https://doi.org/10.1016/j.clay.2010.01.016
Yadav, K. S., Prabha, R., & Renuka, K. (2015). Active packaging: Concepts and applications. International Journal of Food and Nutritional Sciences, 4(2), 194–200.
Zhang, Y., Simpson, B. K., & Dumont, M. J. (2018). Effect of beeswax and carnauba wax addition on properties of gelatin films: A comparative study. Food Bioscience, 26, 88–95. https://doi.org/10.1016/j.fbio.2018.10.005
Downloads
Published
Issue
Section
License
Copyright (c) 2025 M Prasanna, E Naga Mallika, K Sudhir

This work is licensed under a Creative Commons Attribution 4.0 International License.