CRISPR/Cas Technology: Revolutionize the Germ Cell Editing

Authors

  • Ritika Embryo Biotechnology Lab, Animal Biotechnology Division ICAR-National Dairy Research Institute, Karnal-132001 (Haryana), India
  • Hanshika Pal Embryo Biotechnology Lab, Animal Biotechnology Division ICAR-National Dairy Research Institute, Karnal-132001 (Haryana), India
  • Shavi Embryo Biotechnology Lab, Animal Biotechnology Division ICAR-National Dairy Research Institute, Karnal-132001 (Haryana), India
  • Naresh Lalaji Selokar Embryo Biotechnology Lab, Animal Biotechnology Division ICAR-National Dairy Research Institute, Karnal-132001 (Haryana), India
  • Manoj Kumar Singh Embryo Biotechnology Lab, Animal Biotechnology Division ICAR-National Dairy Research Institute, Karnal-132001 (Haryana), India

DOI:

https://doi.org/10.48165/ijar.2025.46.03.3

Keywords:

CRISPR/Cas, Germ cell, Genome editing.

Abstract

CRISPR-Cas9-based editing in germ cells like PGCs, spermatogonial stem cells, oocytes, and early embryos can poten tially correct heritable genetic disorders, preventing their transmission to future generations. Additionally, CRISPR based gene editing in germ cells can enhance fertility by repairing mutations linked to infertility. Despite its potential,  germline editing presents significant challenges like off-target effects, unintended mutations, and mosaicism, raising  concerns about safety and long-term consequences. Advances in base and prime editing techniques aim to improve  precision and reduce unwanted mutations. Ongoing research focuses on enhancing editing efficiency, understanding the  implications of heritable changes, and developing ethical frameworks to govern its use. This review emphasizes genome  editing in germ cells to revolutionize animal breeding, ensuring more sustainable agricultural practices and long-term  benefits for society. As the field progresses, balancing scientific innovation with ethical responsibility will be crucial in  determining the future of CRISPR-based germline editing.

References

Abbasi, F., Kodani, M., Emori, C., Kiyozumi, D., Mori, M., Fujihara, Y., & Ikawa, M. (2020). CRISPR/Cas9-mediated genome editing reveals Oosp family genes are dispensable for female fertility in mice. Cells, 9(4), 821.

Abe, M., Nakatsukasa, E., Natsume, R., Hamada, S., Sakimura, K., Watabe, A. M., & Ohtsuka, T. (2023). A novel technique for large-fragment knock-in animal production without ex vivo handling of zygotes. Scientific Reports, 13(1), 2245.

Anzai, T., Hara, H., Chanthra, N., Sadahiro, T., Ieda, M., Hanazono, Y., & Uosaki, H. (2021). Generation of efficient knock-in mouse and human pluripotent stem cells using CRISPR-Cas9. Methods in Molecular Biology, 2320, 247–259.

Fan, Z., Regouski, M., Liu, Y., Keim, J., Perisse, I., Oatley, J., & Polejaeva, I. (2020). Generation of NANOS2 knockout goats using CRISPR/Cas9 and somatic cell nuclear transfer techniques. Reproduction, Fertility and Development, 32(2), 193–194.

Hernandez-Medrano, J., & Belmpa, M. (2024). Folliculogenesis and oogenesis. In Mastering Clinical Embryology (pp. 75–81). CRC Press.

Idoko-Akoh, A., Taylor, L., Sang, H. M., & McGrew, M. J. (2018). High-fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells. Scientific Reports, 8(1), 15126.

Jabbar, A., Zulfiqar, F., Mahnoor, M., Mushtaq, N., Zaman, M. H., Din, A. S. U., Khan, M. A., & Ahmad, H. I. (2021). Advances and perspectives in the application of CRISPR-Cas9 in livestock. Molecular Biotechnology, 63(9), 757–767.

Jo, A., Ham, S., Lee, G. H., Lee, Y. I., Kim, S., Lee, Y. S., Shin, J. H., & Lee, Y. (2015). Efficient mitochondrial genome editing by CRISPR/Cas9. Biomedical Research International, 2015, 305716.

Kumaresan, A., Das Gupta, M., Datta, T. K., & Morrell, J. M. (2020). Sperm DNA integrity and male fertility in farm animals: a review. Frontiers in Veterinary Science, 7, 321.

Li, Q., Li, Y., Yang, S., Huang, S., Yan, M., Ding, Y., Tang, W., Lou, X., Yin, Q., Sun, Z., & Lu, L. (2018). CRISPR–Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development. Nature Cell Biology, 20(11), 1315–1325.

Luan, Y., So, W., Dong, R., Abazarikia, A., & Kim, S. Y. (2024). KIT in oocytes: a key factor for oocyte survival and reproductive lifespan. EBioMedicine, 106, 105263.

McFarlane, G. R., Salvesen, H. A., Sternberg, A., & Lillico, S. G. (2019). On-farm livestock genome editing using cutting-edge reproductive technologies. Frontiers in Sustainable Food Systems, 3, 106.

Montesinos-Lopez, O. A., Montesinos-Lopez, A., Perez Rodriguez, P., Barron-Lopez, J. A., Martini, J. W., Fajardo Flores, S. B., Gaytan-Lugo, L. S., Santana-Mancilla, P. C., & Crossa, J. (2021). A review of deep learning applications for genomic selection. BMC Genomics, 22, 1–23.

Mueller, M. L., McNabb, B. R., Owen, J. R., Hennig, S. L., Ledesma, A. V., Angove, M. L., Conley, A. J., Ross, P. J., & Van Eenennaam, A. L. (2023). Germline ablation achieved via CRISPR/Cas9 targeting of NANOS3 in bovine zygotes. Frontiers in Genome Editing, Ed (5), 1321243.

Oatley, J. M. (2018). Recent advances for spermatogonial stem cell transplantation in livestock. Reproduction, Fertility and Development, 30(1), 44–49.

Ohtsuka, M., Sato, M., Miura, H., Takabayashi, S., Matsuyama, M., Koyano, T., Arifin, N., Nakamura, S., Wada, K., & Gurumurthy, C. B. (2018). i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biology, 19, 1–15.

Park, T. S. (2023). Gene-editing techniques and their applications in livestock and beyond. Journal of Animal Science, 36(2), 333.

Perisse, I. V., Fan, Z., Singina, G. N., White, K. L., & Polejaeva, I. A. (2021). Improvements in gene editing technology boost its applications in livestock. Frontiers in Genetics, 11, 614688.

Popova, J., Bets, V., & Kozhevnikova, E. (2023). Perspectives in genome-editing techniques for livestock. Animals, 13(16), 2580.

Pramod, R. K., & Mitra, A. (2018). Intratesticular injection followed by electroporation allows gene transfer in caprine spermatogenic cells. Scientific Reports, 8(1), 3169.

Raval, K., Kumaresan, A., Sinha, M. K., Elango, K., King, J. P. E. S., Nag, P., Paul, N., Talluri, T. R., & Patil, S. (2024). Sperm proteomic landscape is altered in breeding bulls with greater sperm DNA fragmentation index. Theriogenology, 216, 82–92.

Shen, C., Xu, J., Zhou, Q., Lin, M., Lv, J., Zhang, X., Wu, Y., Chen, X., Yu, J., Huang, X., & Zheng, B. (2021). E3 ubiquitin ligase ASB17 is required for spermiation in mice. Translational Andrology and Urology, 10(12), 4320.

Smela, M. D. P., Kramme, C. C., Fortuna, P. R., Adams, J. L., Su, R., Dong, E., Kobayashi, M., Brixi, G., Kavirayuni, V. S., Tysinger, E., & Kohman, R. E. (2023). Directed differentiation of human iPSCs to functional ovarian granulosa-like cells via transcription factor overexpression. Elife, 12, 83291.

Teng, K., Ford, M. J., Harwalkar, K., Li, Y., Pacis, A. S., Farnell, D., Yamanaka, N., Wang, Y. C., Badescu, D., Ton Nu, T. N., Ragoussis, J., Huntsman, D. G., Arseneau, J., & Yamanaka, Y. (2021). Modelling high-grade serous ovarian carcinoma using a combination of in vivo fallopian tube electroporation and CRISPR-Cas9-mediated genome editing. Cancer Research, 81(20), 5147–5160.

Vilarino, M., Rashid, S. T., Suchy, F. P., McNabb, B. R., Van Der Meulen, T., Fine, E. J., Ahsan, S. D., Mursaliyev, N., Sebastiano, V., Diab, S. S., & Huising, M. O. (2017). CRISPR/Cas9 microinjection in oocytes disables pancreas development in sheep. Scientific Reports, 7(1), 17472.

Webster, D., Bondareva, A., Solin, S., Goldsmith, T., Su, L., Lara, N. D. L. E. M., Carlson, D. F., & Dobrinski, I. (2021). Targeted gene editing in porcine spermatogonia. Frontiers in Genetics, 11, 627673.

Wen, Z., Zhu, H., Zhang, A., Lin, J., Zhang, G., Liu, D., Xiao, Y., Ye, C., Sun, D., Wu, B., & Zhang, J. (2020). Cdc14a has a role in spermatogenesis, sperm maturation and male fertility. Experimental Cell Research, 395(1), 112178.

Wu, Y., Zhou, H., Fan, X., Zhang, Y., Zhang, M., Wang, Y., Xie, Z., Bai, M., Yin, Q., Liang, D., & Tang, W. (2015). Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research, 25(1), 67–79.

Published

2025-09-26

How to Cite

Ritika, Pal, H., Shavi, Lalaji Selokar, N., & Kumar Singh, M. (2025). CRISPR/Cas Technology: Revolutionize the Germ Cell Editing. The Indian Journal of Animal Reproduction, 46(3), 24-29. https://doi.org/10.48165/ijar.2025.46.03.3