Applications of Nanotechnology in Animal Reproduction: An Overview
DOI:
https://doi.org/10.48165/ijar.2025.46.03.2Keywords:
Animal reproduction, Drug delivery, Diagnostic, Nanotechnology, NanocarrierAbstract
Nanotechnology is revolutionizing reproductive management in farm animals. This cutting-edge field enables preci sion interventions in assisted reproductive techniques (ART), including advanced drug delivery systems, cryopreser vation technologies, and manipulation of gametes and embryos. Nanoparticle-based extenders, such as selenium (Se) and nano-zinc oxide (ZnO), mitigate oxidative stress during cryopreservation, improving sperm viability and post-thaw motility. Controlled-release systems utilizing polymeric and metal-based nanoparticles facilitate the sustained deliv ery of reproductive hormones like progesterone and GnRH, optimizing estrous synchronization and superovulation. Additionally, herbal-extracted nanoparticles, such as those from Moringa oleifera and Curcuma caesia, exhibit potent antioxidant properties, further enhancing sperm preservation. Quantum dots provide real-time insights into fertilization dynamics, while biosensors, including L-tyrosine silver nanoparticles, improve estrus detection rate. Despite these prom ising advancements, challenges such as regulatory hurdles, high production costs, and concerns regarding nanoparticle toxicity persist. Future research aims to refine these technologies for enhanced safety, cost-effectiveness, and seamless integration into sustainable livestock breeding programs.
References
Abbasi, Y., Hajiaghalou, S., Baniasadi, F., Mahabadi, V. P., Ghalamboran, M. R., & Fathi, R. (2021). Fe3O4 magnetic nanoparticles improve the vitrification of mouse immature oocytes and modulate the pluripotent genes expression in derived pronuclear-stage embryos. Cryobiology, 100, 81–89.
Abdel Halim, B. R., Moselhy, W. A., & Helmy, N. A. (2018). Developmental competence of bovine oocytes with increasing concentrations of nanocopper and nanozinc particles during in vitro maturation. Asian Pac. J. Reprod., 7(4), 161.
Ajdary, M., Moosavi, M. A., Rahmati, M., Falahati, M., Mahboubi, M., Mandegary, A., Jangjoo, S., Mohammadinejad, R., & Varma, R. S. (2018). Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials, 8, 634.
Archunan, G., & Rameshkumar, K. (2012). 1-Iodoundecane, an estrus indicating urinary chemosignal in bovine (Bos taurus). J. Vet. Sci. Tech., 3, 121–123.
Balao da Silva, C. M., Ortega‐Ferrusola, C., Morrell, J. M., Rodriguez Martínez, H., & Pena, F. J. (2016). Flow cytometric chromosomal sex sorting of stallion spermatozoa induces oxidative stress on mitochondria and genomic DNA. Reprod. Domest. Anim., 51(1), 18–25.
Barkalina, N., Jones, C., Wood, M. J., & Coward, K. (2015). Extracellular vesicle mediated delivery of molecular compounds into gametes and embryos: Learning from nature. Hum. Reprod. Update, 21(5), 627–639.
Bucak, M. N., Başpınar, N., Tuncer, P. B., Coyan, K., Sarıözkan, S., Akalın, P. P., … & Küçükgünay, S. (2012). Effects of curcumin and dithioerythritol on frozen‐thawed bovine semen. Andrologia, 44, 102–109.
Bucak, M. N., Sarıözkan, S., Tuncer, P. B., Sakin, F., Ateşşahin, A., Kulaksız, R., & Çevik, M. (2010). The effect of antioxidants on post-thawed Angora goat (Capra hircus ancryren sis) sperm parameters, lipid peroxidation and antioxidant activities. Small Rumin. Res., 89(1), 24–30.
Cao, Y., Gong, Y., Liao, W., Luo, Y., Wu, C., Wang, M., & Yang, Q. (2018). A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs). Biometals, 31, 457–476.
Caraviello, D. Z., Weigel, K. A., Fricke, P. M., Wiltbank, M. C., Florent, M. J., Cook, N. B., & Rawson, C. L. (2006). Survey of management practices on reproductive performance of dairy cattle on large US commercial farms. J. Dairy Sci., 89(12), 4723–4735.
De Almeida Borges, V. R., Tavares, M. R., da Silva, J. H., Tajber, L., Boylan, F., Ribeiro, A. F., & de Sousa, V. P. (2018). Development and characterization of poly (lactic-co-glycolic) acid nanoparticles loaded with copaiba oleo resin. Pharm. Dev. Technol., 23(4), 343–350.
De Frates, K., Markiewicz, T., Gallo, P., Rack, A., Weyhmiller, A., Jarmusik, B., & Hu, X. (2018). Protein polymer-based nanoparticles: Fabrication and medical applications. Int. J. Mol. Sci., 19(6), 1717.
Dhanya, A. T., Haridas, K. R., Divia, N., & Sudheesh, S. (2012). Development of Zein-Pectin nanoparticle as drug carrier. Int. J. Drug Deliv., 4(2), 147.
Domingues, W. B., da Silveira, T. L. R., Komninou, E. R., Monte, L. G., Remio, M. H., Dellagostin, O. A., Corcini, C. D., Varela Junior, A. S., Seixas, F. K., Collares, T., & Campos, V. F. (2017). Flow cytometric sex sorting affects CD4 membrane distribution and binding of exogenous DNA on bovine sperm cells. Zygote, 25(4), 519–528.
Dorostkar, K., Alavi-Shoushtari, S. M., & Mokarizadeh, A. (2012). Effects of in vitro selenium addition to the semen extender on the spermatozoa characteristics before and after freezing in water buffaloes (Bubalus bubalis). Vet. Res. Forum, 3(4), 263.
Elsaesser, A., & Howard, C. V. (2012). Toxicology of nanoparticles. Adv. Drug Deliv. Rev., 64(2), 129–137.
Elsheshtawy, R., & Elnattat, W. S. (2020). Assessment of buffalo semen preservability using tris extender enriched with Moringa oleifera extract. Egypt J. Vet Sci., 51(2), 235–239.
Feugang, J., Liao, S., Crenshaw, M., Clemente, H., Willard, S., & Ryan, P. (2015). Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement. J. Fert. In Vitro., 3(145), 17–19.
Gelaye, Y. (2024). Application of nanotechnology in animal nutrition: Bibliographic review. Cogent Food Agric., 10(1), 2290308.
Gulzar, M. W., Khan, M. K., Gulzar, R., Suleman, M., Hussain, J., Hassan, A., & Haider, Z. (2024). Nanotechnology application in overcoming the reproductive disorders in livestock: Nanotechnology in livestock reproduction. Lett. Anim. Biol., 4(2), 11–18.
Haroon, N., & Stine, K. J. (2023). Electrochemical detection of hormones using nanostructured electrodes. Coatings, 13(12), 2040.
Hashem, N. M., & Gonzalez-Bulnes, A. (2021). Nanotechnology and reproductive management of farm animals: Challenges and advances. Animals, 11(7), 1930.
Hashem, N. M., El-Hawy, A. S., El-Bassiony, M. F., El-Hamid, I. S. A., Gonzalez-Bulnes, A., & Martinez-Ros, P. (2023). Use of GnRH-encapsulated chitosan nanoparticles as an alternative to eCG for induction of estrus and ovulation during non-breeding season in sheep. Biology, 12(3), 351.
Hashem, N. M., El-Zarkouny, S. Z., Taha, T. A., & Abo-Elezz, Z. R. (2015). Oestrous response and characterization of the ovulatory wave following oestrous synchronization using PGF2α alone or combined with GnRH in ewes. Small Rumin. Res., 129, 84–87.
Heidari, J., Seifdavati, J., Mohebodini, H., Sharifi, R. S., & Benemar, H. A. (2019). Effect of nano zinc oxide on post-thaw variables and oxidative status of Moghani ram semen. Kafkas Univ Vet Fak Derg., 25(1), 71–76.
Helbling, I. M., Busatto, C. A., Fioramonti, S. A., Pesoa, J. I., Santiago, L., Estenoz, D. A., & Luna, J. A. (2018). Preparation of TPP-crosslinked chitosan microparticles by spray drying for the controlled delivery of progesterone intended for estrus synchronization in cattle. Pharm. Res., 35, 1–15.
Henriques da Silva, J., Borges, V. R. D. A., Pereira, L. D. C. B., Ferrari, R., de Mattos, R. M., Barros, E. G. D. O., Palmero, C. Y., Fernandes, P. D., de Carvalho, P. R., Pereira de Sousa, V., Cabral, L. M., & Nasciutti, L. E. (2015). The oil-resin of the tropical rainforest tree Copaifera langsdorffii reduces cell viability, changes cell morphology and induces cell death in human endometriotic stromal cultures. J. Pharm. Pharmacol., 67(12), 1744–1755.
Hurtado-López, P., & Murdan, S. (2006). Zein microspheres as drug/antigen carriers: A study of their degradation and erosion, in the presence and absence of enzymes. J. Microencapsul., 23(3), 303–314.
Ismail, A. A., Abdel-Khalek, A. K. E., Khalil, W. A., Yousif, A. I., Saadeldin, I. M., Abomughaid, M. M., & El-Harairy, M. A. (2020). Effects of mint, thyme, and curcumin extract nano formulations on the sperm quality, apoptosis, chromatin decondensation, enzyme activity, and oxidative status of cryopreserved goat semen. Cryobiology, 97, 144–152.
Kalme, S., Kandaswamy, S., Chandrasekharmath, A., Katiyar, R., Rajamanickam, G. P., Kumar, S., & Dendukuri, D. (2019). A hydrogel sensor-based microfluidic platform for the quantitative and multiplexed detection of fertility markers for point-of-care immunoassays. Anal. Methods, 11(12), 1639–1650.
Kameni, S. L., Dlamini, N. H., & Feugang, J. M. (2024). Exploring the full potential of sperm function with nanotechnology tools. Anim. Reprod., 21(3), e20240033.
Karimi, M., Sadeghi, R., & Kokini, J. (2018). Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends Food Sci. Technol., 75, 129–145.
Karuppannan, C., Sivaraj, M., Kumar, J. G., Seerangan, R., Balasubramanian, S., & Gopal, D. R. (2017). Fabrication of progesterone-loaded nanofibers for the drug delivery applications in bovine. Nanoscale Res. Lett., 12, 1–6.
Khalil, W. A., El-Harairy, M. A., Zeidan, A. E., & Hassan, M. A. (2019). Impact of selenium nanoparticles in semen extender on bull sperm quality after cryopreservation. Theriogenology, 126, 121–127.
Khalil, W. A., Hassan, M. A., El-Harairy, M. A., & Abdelnour, S. A. (2023). Supplementation of thymoquinone nanoparticles to semen extender boosts cryotolerance and fertilizing ability of buffalo bull spermatozoa. Animals, 13(18), 2973.
Khalique, M. A., Rehman, H., Andrabi, S. M. H., Majeed, K. A., Ahmad, N., Fayyaz, M. H., & Sulaiman, S. (2023). Antioxidant effects of zinc-oxide nanoparticles on post-thaw quality and in vivo fertility of Beetal buck spermatozoa. Small Rumin. Res., 225, 107012.
Komninou, E. R., Remião, M. H., Lucas, C. G., Domingues, W. B., Basso, A. C., Jornada, D. S., Deschamps, J. C., Beck, R. C., Pohlmann, A. R., Bordignon, V., Seixas, F. K., Campos, V. F., Guterres, S. S., & Collares, T. (2016). Effects of two types of melatonin-loaded nanocapsules with distinct supramolecular structures: Polymeric (NC) and lipid core nanocapsules (LNC) on bovine embryo culture model. PLoS One, 11(6), e0157561.
Lavanya, M., Jeyakumar, S., Veerappa, V. G., Pushpadhas, H. A., Ramesha, K. P., Kumaresan, A., & Emerald, F. M. E. (2024). Fabrication and characterization of progesterone-loaded pullulan nanofibers for controlled release. J. Drug Deliv. Sci. Technol., 91, 105193.
Lee, M. S., Hsu, W., Huang, H. Y., Tseng, H. Y., Lee, C. T., Hsu, C. Y., Shieh, Y. C., Wang, S. H., Yao, D. J., & Liu, C. H. (2020). Simultaneous detection of two growth factors from human single-embryo culture medium by a bead-based digital microfluidic chip. Biosens. Bioelectron., 150, 111851.
Manikkaraja, C., Mahboob, S., Al-Ghanim, K. A., Rajsh, D., Selvaraj, K., Sivakumar, M., & Archunan, G. (2020). A novel method to detect bovine sex pheromones using l-tyrosine-capped silver nanoparticles: Special reference to nano sensor-based estrus detection. J. Photochem. Photobiol. B., 203, 111747.
McGlone, J. J., Devaraj, S., & Garcia, A. (2019). A novel boar pheromone mixture induces sow estrus behaviors and reproductive success. Appl. Anim. Behav. Sci., 219, 104832.
Merati, Z., & Farshad, A. (2020). Ginger and echinacea extracts improve the quality and fertility potential of frozen-thawed ram epididymal spermatozoa. Cryobiology, 92, 138–145.
Müller, V., Piai, J. F., Fajardo, A. R., Fávaro, S. L., Rubira, A. F., & Muniz, E. C. (2011). Preparation and characterization of zein and zein-chitosan microspheres with great prospective of application in controlled drug release. J. Nanomater., 2011(1), 928728.
Odhiambo, J. F., Sutovsky, M., De Jarnette, J. M., Marshall, C., & Sutovsky, P. (2011). Adaptation of ubiquitin-PNA based sperm quality assay for semen evaluation by a conventional flow cytometer and a dedicated platform for flow cytometric semen analysis. Theriogenology, 76(6), 1168–1176.
Odhiambo, J. F., DeJarnette, J. M., Geary, T. W., Kennedy, C. E., Suarez, S. S., Sutovsky, M., & Sutovsky, P. (2014). Increased conception rates in beef cattle inseminated with nanopurified bull semen. Biol. Reprod., 91(4), 97–91.
Olsen, J. E., Christensen, H., & Aarestrup, F. M. (2006). Diversity and evolutio of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J. Antimicrob. Chemother., 57(3), 450–460.
Osama, E., El-Sheikh, S. M., Khairy, M. H., & Galal, A. A. (2020). Nanoparticles and their potential applications in veterinary medicine. J. Adv. Vet. Res., 10(4), 268–273.
Paliwal, R., & Palakurthi, S. (2014). Zein in controlled drug delivery and tissue engineering. J. Control. Release, 189, 108–122.
Patil, S. S., Kore, K. B., & Kumar, P. (2009). Nanotechnology and its applications in veterinary and animal science. Vet. World, 2(12), 475–477.
Peñalva, R., Esparza, I., González-Navarro, C. J., Quincoces, G., Peñuelas, I., & Irache, J. M. (2015). Zein nanoparticles for oral folic acid delivery. J. Drug Deliv. Sci. Technol., 30, 450–457.
Petruska, P., Capcarova, M., & Sutovsky, P. (2014). Antioxidant supplementation and purification of semen for improved artificial insemination in livestock species. Turk J Vet Anim Sci., 38(6), 643–652.
Piotr, S., Marta, S., Aneta, F., Barbara, K., & Magdalena, Z. (2013). Antibiotic resistance in Staphylococcus aureus strains isolated from cows with mastitis in eastern Poland and analysis of susceptibility of resistant strains to alternative non-antibiotic agents: Lysostaphin, nisin and polymyxin B. J. Vet. Med. Sc., 76(3), 355–362.
Quan, G. B., Ma, Y., Li, J., Wu, G. Q., Li, D. J., Ni, Y. N., & Hong, Q. H. (2015). Effects of Hoechst33342 staining on the viability and flow cytometric sex-sorting of frozen-thawed ram sperm. Cryobiology, 70(1), 23–31.
Rathbone, M. J., & Burke, C. R. (2013). Controlled release intravaginal veterinary drug delivery. In Long acting animal health drug products: Fundamentals and applications (pp. 247–270). New York, NY: Springer US.
Rivera Aguayo, P., Bruna Larenas, T., Alarcón Godoy, C., Cayupe Rivas, B., González-Casanova, J., Rojas-Gómez, D., & Caro Fuentes, N. (2020). Antimicrobial and antibiofilm capacity of chitosan nanoparticles against wild type strain of Pseudomonas sp. isolated from milk of cows diagnosed with bovine mastitis. Antibiotics, 9(9), 551.
Rizvi, S. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 26(1), 64–70.
Sánchez-Rubio, F., Soria-Meneses, P. J., Jurado-Campos, A., Bartolomé-García, J., Gómez-Rubio, V., Soler, A. J., Arroyo Jimenez, M. M., Santander-Ortega, M. J., Plaza-Oliver, M., Lozano, M. V., Garde, J. J., & Fernández-Santos, M. R. (2020). Nanotechnology in reproduction: Vitamin E nanoemulsions for reducing oxidative stress in sperm cells. Free Radic. Biol. Med., 160, 47–56.
Saragusty, J., & Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction, 141(1), 1–19.
Shahin, M. A., Khalil, W. A., Saadeldin, I. M., Swelum, A. A. A., & El-Harairy, M. A. (2020). Comparison between the effects of adding vitamins, trace elements, and nanoparticles to shotor extender on the cryopreservation of dromedary camel epididymal spermatozoa. Animals, 10(1), 78.
Sobeh, M., Hassan, S. A., El Raey, M. A., Khalil, W. A., Hassan, M. A., & Wink, M. (2017). Polyphenolics from Albizia harveyi exhibit antioxidant activities and counteract oxidative damage and ultra-structural changes of cryopreserved bull semen. Molecules, 22(11), 1993.
Swain, P. S., Rajendran, D., Rao, S. B. N., & Dominic, G. (2015). Preparation and effects of nano mineral particle feeding in livestock: A review. Vet. World, 8, 888–891.
Tvrdá, E., Greifová, H., Mackovich, A., Hashim, F., & Lukáč, N. (2018). Curcumin offers antioxidant protection to cryopreserved bovine semen. Czech J. Anim. Sci., 63(7).
Wang, K., Lu, X., Lu, Y., Wang, J., Lu, Q., Cao, X., Yang, Y., & Yang, Z. (2022). Nanomaterials in animal husbandry: Research and prospects. Front. Genet., 13, 915911.
Yanez, L. Z., & Camarillo, D. B. (2017). Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies. Mol. Hum. Reprod., 23(4), 235–247.
Yang, X., Ouyang, W., Sun, J., & Li, X. (2009). Post-antibiotic effect of amoxicillin nanoparticles against main pathogenic bacteria of bovine mastitis in vitro. J. Northwest Agric. For. Univ. Nat. Sci. Ed., 37, 1–6.
Yuksel, M., Luo, W., McCloy, B., Mills, J., Kayaharman, M., & Yeow, J. T. (2023). A precise and rapid early pregnancy test: Development of a novel and fully automated electrochemical point-of-care biosensor for human urine samples. Talanta, 254, 124156.
Zandiyeh, S., Kalantari, H., Fakhri, A., Nikkhah, M., Janani, B. J., & Sabbaghian, M. (2024). A review of recent developments in the application of nanostructures for sperm cryopreservation. Cryobiology, 115, 104890.
Zhou, X., Li, W., Fang, L., Zhang, D., & Dai, J. (2015). Hydroxyapatite nanoparticles improved survival rate of vitrified porcine oocytes and its mechanism. CryoLetters, 36(1), 45–50.